Raynen睿能®

CANopen 通讯 用户手册

适用于 RS2C

版本: V1.2

固件版本: V15

版本记录

版本	日期	变更内容
V1.2	2022年1月	第一版发行

版权声明

福建睿能科技股份有限公司保留所有权利,未经本公司许可,不得以任何形式方式复制 或传播本手册任何部分。

免责声明

本产品文件在发布时是准确可靠的,福建睿能科技股份有限公司保留在不另行通知的情况下更改本手册中描述的权利。

联系信息

福建睿能科技股份有限公司

地址:福建省福州市鼓楼区软件大道89号软件园C区26号

电话: 0591-88267288

传真: 0591-88267299

邮编: 350003

关于手册

本手册不附在产品包装箱内,如需要获取电子版 PDF 文件,通过睿能科技官网(www.raynen.cn)下载。如果您需要咨询或相关帮助,请与本公司取得联系。

目录

1	り写	Д	- 5 -
	1.1	关于本用户手册	- 5 -
	1.2	使用前	- 5 -
	1.3	CANopen 通讯规格	- 5 -
2			
_			
	2.1	驱动器于外围设备连接	
	2.2	CANopen 连接器	- 6 -
3	功能	论设置	- 8 -
	3.1	CANopen 通讯对象	- 8 -
	3.1.	1 节点地址	- 8 -
	3.1.	2 通讯对象标识符	- 8 -
	3.1.	.3 SDO 传输	- 9 -
	3.1.	4 异步 PDO 传输	11 -
	3.1.	5 同步 PDO 传输	12 -
	3.1.	6 PDO 映射对象	13 -
	3.2	网络管理对象 (NMT)	13 -
	3.2.	1 NMT 服务	13 -
	3.2.	2 心跳保护	15 -
	3.3	CiA402 功能设定	15 -
	3.3.	1 驱动器状态控制	15 -
	3.3.	2 指令极性设置	18 -
	3.3.	3 电子齿轮设置	19 -
	3.3.	4 位置到达阈值	20 -
	3.3.	5 位置偏差报警阈值	21 -
	3.3.	6 速度到达功能	21 -
	3.3.	.7 电机零速检测	21 -
	3.4	停机设定	22 -
	3.4.	1 紧急停机	22 -

	3.4.2	伺服 OFF 停机	- 23 -
	3.4.3	暂停停机	- 24 -
	3.4.4	伺服警告停机	- 24 -
	3.4.5	伺服故障停机	- 25 -
	3.4.6	超程停机停机	- 25 -
3	.5 基本	功能设定	- 25 -
	3.5.1	控制模式设定	- 25 -
	3.5.2	旋转方向设定	- 26 -
	3.5.3	制动电阻设定	- 26 -
	3.5.4	抱闸设定	- 28 -
4	控制模式	<u></u>	- 30 -
4	.1 轮廓	序位置模式(PP- Profile Position Mode)	- 30 -
	4.1.1	控制字与状态字	
	4.1.2	PP 模式所有对象字典	- 33 -
	4.1.3	PP 模式使用方法	- 34 -
	4.1.4	PDO 配置建议	- 35 -
4	.2 轮廓	i速度模式(PV- Profile Velocity Mode)	- 36 -
	4.2.1	控制字与状态字	- 36 -
	4.2.2	PV 模式所有对象字典	- 37 -
	4.2.3	PV 模式使用操作步骤	- 38 -
	4.2.4	PDO 配置建议	- 39 -
4	.3 轮廓	蒋转矩模式(PT- Profile Torque Mode)	- 39 -
	4.3.1	控制字与状态字	- 39 -
	4.3.2	PT 模式所有对象字典	- 40 -
	4.3.3	PT 模式使用操作步骤	- 41 -
	4.3.4	PDO 配置建议	- 42 -
4	.4 插补	位置模式(IP- Interpolation Position Mode)	- 42 -
	4.4.1	控制字与状态字	- 43 -
	4.4.2	IP 模式所有对象字典	- 44 -
	4.4.3	IP 模式使用操作步骤	- 45 -
4	.5 原点	回归模式 (HM- Homing Mode)	- 46 -
	4.5.1	控制字与状态字	- 46 -
	4.5.2	关联的对象字典	- 48 -
	4.5.3	回零操作步骤	- 48 -

	4.5.4	PDO 配置建议	49 -
	4.5.5	回零模式介绍	49 -
5	对象字	典详解	57 -
	5.1 厂	家自定义对象(3000h ~ 3FFFh)	57 -
	5.1.1	基本参数	57 -
	5.1.2	I/O 端子配置	63 -
	5.1.3	增益调整	65 -
	5.1.4	振动抑制	73 -
	5.1.5	扩展控制	77 -
	5.1.6	速度模式参数	78 -
	5.1.7	辅助功能	79 -
	5.1.8	运行状态指示	80 -
	5.1.9	通讯参数	85 -
	5.1.10	CANopen 通讯参数	86 -
	5.1.11	电机参数	87 -
	5.2 Ci	A402 参数详解(6000h ~ 6FFFh)	87 -
6	故障处	理	99 -
	6.1 警	告和故障一览表 	99 -
	6.2 警	告的处理方法	102 -
	6.3 故	章的处理方法	104 -
7	对象字	典一览表	113 -
	7.1 对	象字典 1000H 组参数列表	113 -
	7.2 对	象字典 3000H 组参数列表(驱动器参数组)	116 -
	7.3 য ়ব	象字曲 6000H 组参数列表	- 123 -

1 介绍

1.1 关于本用户手册

驱动器的功能是通过各种指令或者变量进行配置,这些指令或者变量通过串口或者现场总线的方式进行通信。

本手册描述了在 RA/RS 系列驱动器中通过 CANopen (CoE) 通信实现的各种功能配置。 本手册适用于进行过 RA/RS 系列驱动器使用培训的熟练的技术人员参考使用。

1.2 使用前

使用前请根据伺服驱动器的铭牌信息确认您所选用的伺服型号支持 CANopen 通讯功能。

1.3 CANopen 通讯规格

表 1.1 CANopen 驱动器规格

项目	规格				
通讯协议	CANopen 协议(CiA402)				
帧类型	11 位 COB-ID + 8 字节数据				
通讯接口	RJ45 * 2				
拓扑结构	线型				
	不支持同步传输,支持事件触发或时间触发				
PDO 传输类型	4TPDO+4RPDO				
NMT	支持				
心跳功能	支持				
SDO	支持				
DI/DO	8 路 DI/4 路 DO				
EDS 文件	支持				
波特率 bps	20K/50K/100K/125K/250K/500K/1M				
	Profile Position Mode PP				
	Profile Velocity Mode PV				
支持的 CIA402 模式	Profilr Torque Mode PT				
	Homing Mode HM				
	InterPolation Position Mode IP				

2 现场总线的布线和安装

2.1 驱动器于外围设备连接

单相供电接线示例

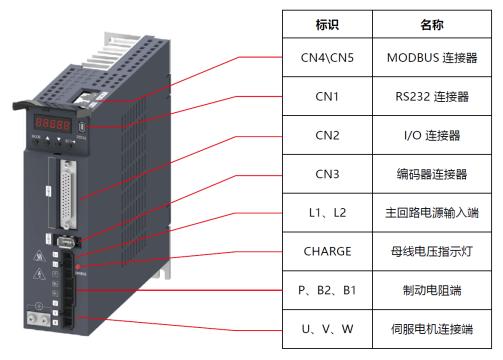


图 2.1 RS2C 伺服驱动器接口示意图

2.2 CANopen 连接器

可以通过 RJ45 标准网口 (CN4 和 CN5) 连接伺服驱动器与上位机,可实现 CAN 通讯以及 485 通讯,本手册仅列出 CAN 通讯接口定义。

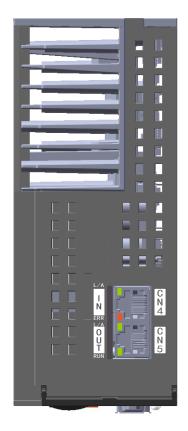


图 2.2 伺服驱动器 CANopen 连接器

接口定义:

表 2.1 CANopen 连接器信号说明

注意:1.为了提高 CAN 网络的稳定性,建议在 CAN 网络的首末节点都加上 120Ω 终端电阻;

2. 针脚 1/2/3 都需要接线。

3 功能设置

3.1 CANopen 通讯对象

CANopen 通讯包含多种应用层协议(COE-CANopen 基于 CAN 的应用),睿能 CANopen 通讯型 伺服驱动器中,采用 IEC60800-7-200 CANOpen 运动控制协议(俗称 CiA402),在 CiA402 协议中实现 数据传输主要的通讯对象包含:SDO,TxPDO(从站发送至主站的周期性数据),RxPDO(主站发送至从站的周期性数据)。

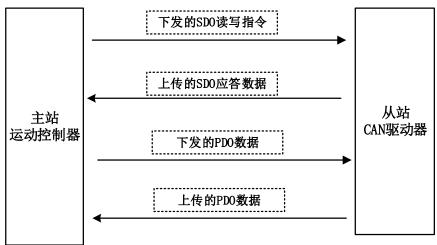


图 3.1 通讯对象

图 3.1 中 SDO 读/写指令是指:主站主动下发读/写指令给到从站,从站接收到读/写指令后,返回响应的数据即可,无通信周期要求; PDO 数据则是周期性的主站下发一个 PDO (RxPDO),从站也会上传一个 PDO (TxPDO),PDO 中传输的数据内容在主站初始化的时候可自动或手动配置。

3.1.1 节点地址

节点地址 (node_ID),对于 CAN 网络中的所有节点,都有一个唯一的节点号/节点地址,同一个 CAN 网络中不允许存在两个相同的节点号。睿能 CANopen 系列驱动器的节点地址通过参数 P82.01 设置,可设置的范围是 1~127 ,设置完毕需要重新上电才会生效。

通常情况下伺服驱动器在 CAN 网络中都是从节点,node_ID 禁止设置为 0,Node_ID =0 是用于广播的主节点。

3.1.2 通讯对象标识符

通讯对象标识符 (COB-ID), 习惯上简称为 COB-ID, COB-ID 是一个 11 位(bit)或者 29 位(bit)数据 长度的数据, 11 位的在工业领域常用,俗称为标准 COB-ID; 29 位多用于车辆行业,俗称为扩展 COB-ID,睿能系列驱动器仅支持 11 位。

CAN 网络中所有的报文开头都是 COB-ID 开头,所以认识常用 COB-ID 便于分析问题。

₩ 5.1	而 / 问题 / () 测
通讯对象	COB-ID
TPDO1	0x180+node_ID
RPDO1	0x200+node_ID
TPDO2	0x280+node_ID
RPDO2	0x300+node_ID
TPDO3	0x380+node_ID
RPDO3	0x400+node_ID
TPDO4	0x480+node_ID
RPDO4	0x500+node_ID
主站 SDO	0x600+node_ID
从站 SDO	0x580+node_ID
心跳功能	0x700+node_ID

表 3.1 常用通讯对象的 COB-ID

3.1.3 SDO 传输

SDO (Service Data Object) 服务数据对象,用于非实时数据的传输。数据访问采用的是问询制,主站发出 SDO 读/写指令,从站根据指令内容,响应主站指令。

1. SDO 写操作

SDO 写指令的格式 主/从 CAN 报文 备注 COB-ID 站 1 2 0 3 5 7 6 数据1是 0x23 (4字节) 索引 子索引 数据 1 数据 2 数据 3 数据 4 低位数据 数据1是 0x600 0x27 (3字节) 索引 子索引 数据 1 数据 2 数据 3 低位数据 主站 +node ID 数据1是 0x2B (2字节) 索引 子索引 数据 1 数据 2 低位数据 数据1是 0x2F (1字节) 索引 子索引 数据 1 低位数据 0x580 0x60 (成功) 索引 子索引 00 00 00 00 从站 +node ID 0x80 (失败) 索引 中止代码表* 子索引

表 3.2 主站 SDO 写指令操作

*中止代码参考表 3.5。

举例如下,实际发送的报文参考下表

表 3.3 实际 SDO 写操作的报文

COB-ID	实际报文
0x0603	23 00 18 01 83 01 00 80
0x0583	60 00 18 01 00 00 00 00

说明:

- 1) node-ID = 3 , 报文的数据是 16 进制;
- 2) 0x0603 是主站发给从站的 SDO, 0x23 表示写入 4 字节数据, 索引 0x1800,字索引 01, 数据 80000183.
- 3) 0x0583 是从站响应主站的 SDO, 0x60 表示写入成功,索引 0x1800,字索引 01。

2. SDO 读操作

表 3.4 主站 SDO 读指令操作

	X3:: <u>11350</u> KH VXII							
	SDO 读指令的格式							
主/从	COD 1D		CAN 报文					
站	COB-ID	0	1 2	3	4	5	6	7
主站	0x600 +node_ID	0x40 (读指令)	索引	子索引	00	00	00	00
	0x580 +node_ID	0x43(4 字节)	索引	子索引	数据 1	数据 2	数据 3	数据 4
		0x47 (3 字节)	索引	子索引	数据 1	数据 2	数据 3	
从站		0x4B (2字节)	索引	子索引	数据 1	数据 2		
		0x4F (1字节)	索引	子索引	数据 1			
		0x80(读失败)	索引	子索引		中止代	に码表*	

^{*}中止代码参考表 3.5。

举例如下,实际读写的报文参考下表

表 3.5 实际 SDO 写操作的报文

COB-ID	实际报文
0x0603	40 02 20 02 00 00 00 00
0x0583	43 02 20 02 12 34 56 78

说明:

- 1) node-ID = 3 , 报文的数据都是 16 进制;
- 2) 0x0603 是主站发给从站的 SDO, 0x40 表示读数据, 索引 0x2002,字索引 02;
- 3) 0x0583 是从站响应主站的 SDO, 0x43 表示读取的 0x2002:02 是 4 字节的数据,数据内容是: 0x87654321。

表 3.6 SDO 读写错误中止代码表

中止代码	描述
0503 0000	切换位不交替
0504 0000	SDO 协议超时
0504 0005	内存不足
0601 0001	尝试读取只写对象
0601 0002	尝试写一个只读对象
0602 0000	对象字典不存在改对象
0604 0041	对象不能映射到 PDO
0607 0010	数据类型不匹配,服务参数长度不匹配
0609 0011	子索引不存在
0609 0030	超出参数值范围
0609 0031	参数值太高
0609 0032	参数值太低

3.1.4 异步 PDO 传输

过程数据是指周期发送的数据,对于异步传输的 PDO, PDO 发送的周期通常不固定,主站发送的 PDO 称为 RXPDO,从站发送的 PDO 称为 TXPDO,睿能 CANopen 系列驱动器支持 4 个 RPDO+4 个 TPDO。

	100人联列家列农			
COB-ID	序号	通讯对象	映射对象	
0x200	1	0×1/100	0x1600	
+node_ID		0.1400		
0x300	2	0v1401	0x1601	
+node_ID	۷	0X1401	0X1001	
0x400	3	0×1402	0x1602	
+node_ID	<u> </u>	0/1402	0X1002	
0x500	1	0~1403	0x1603	
+node_ID		0/1400	0/1003	
0x180	1	∩v1800	0x1A00	
+node_ID	т	0×1000	UXIAUU	
0x280	2	∩v18N1	0x1A01	
+node_ID		0×1001	OVIVOI	
0x380	3	∩v1802	0x1A02	
+node_ID	J	0/1007	UXIAUZ	
0x480	1	∩v1803	0x1A03	
+node_ID	4	071000	OXTAO2	
	0x200 +node_ID 0x300 +node_ID 0x400 +node_ID 0x500 +node_ID 0x180 +node_ID 0x280 +node_ID 0x380 +node_ID 0x380 +node_ID	0x200 +node_ID 1 0x300 +node_ID 2 0x400 +node_ID 3 0x500 +node_ID 4 0x180 +node_ID 1 0x280 +node_ID 2 0x380 +node_ID 3 0x480 4	0x200 1 0x1400 +node_ID 2 0x1401 0x400 3 0x1402 +node_ID 3 0x1402 0x500 4 0x1403 +node_ID 1 0x1800 +node_ID 2 0x1801 0x380 2 0x1802 0x480 3 0x1802 0x480 4 0x1803	

3.7 PDO 关联对象列表

对于 RPDO 的通讯对象 0x1400~0x1403,用来设置 RPDO 传输的特性,属性定义参考下表。

	农 5.5 化 70 超 机对象 片屏						
索引	子索引	名称	数值	说明			
0x1400	01	COB-ID	0x200 +node_ID	不支持修改			
	02	传输类型	255	异步传输			

表 3.8 RPDO 诵讯对象详解

对于 RPDO 的通讯对象 0x1400~0x1403, 用来设置 RPDO 传输的特性, 0x1400:01 字索引 01 默认值是 0x200+node_ID ,用于表示 COB-ID,该数据是无符号 32 位的数据,最高位用于设置是否激活该 PDO。0x1400:02 字索引 02 用来设置数据传输类型,255 表示异步传输,表示接受到 PDO 后立即处理数据。

举例: node_ID =1,设置 0x1400:01 = 0x201 时,表示激活第一个 RPDO;如果设置 0x1400:01 = 0x80000201 时,表示关闭第一个 RPDO。0x1400:02 = 255 表示异步传输。 对于 TPDO 的通讯对象 0x1800~0x1803,用来设置 TPDO 传输的特性,详细定义参考下表。

表 3.9 TPDO 通讯对象详解

索引	子索引	名称	数值	说明	
	00	字索引个数	5	不支持修改	
	01	COB-ID	0x180		
	01	COB-ID	+node_ID		
0x1800	02	传输类型	255	异步传输	
	03	禁止时间	100	单位: 0.1 毫秒	
	04				
	05	事件时间	0	单位: 1毫秒	

举例: node_ID =1,设置 0x1800:01 = 0x181 时,表示激活第一个 TPDO,如果设置 0x1800:01 = 0x80000181 时,表示关闭第一个 TPDO;0x1800:02 = 255 用于异步传输;设置 0x1800:03 = 100,就是 10 毫秒,设置 0x1800:05 = 100,就是 100 毫秒。那么有以下 PDO 传输特性:如果映射的数据内容长时间是一个恒定值,即使长时间没有改变,那么每过 100 毫秒,也会发出一个 PDO;如果映射的数据变化很快,每毫秒变化一次,但是 PDO 不会每毫秒都发送一次,当时间到达 10 毫秒,才会发出一个 PDO。

3.1.5 同步 PDO 传输

同步 PDO 的传输,需要根据同步帧 0x80 的周期,来决定 PDO (TxPDO,RxPDO) 发送周期,RS2C 既是同步帧的消费者,也可以发送同步帧,发送同步帧由对象 0x1005 和 0x1006 来实现。

0x1005 是发送同步帧报文的 COB-ID,在 CAN 网络中同步帧的报文以 0x80 开头,0x1005 对象是一个 32 位的数据,通过设置该对象数值可以决定是否激活同步报文帧。0x1005 = 40000080h 表示激活同步报文帧,0x1005 = 80h 表示关闭报文帧。

0x1006 用于设置同步报文的周期,数据类型是 32 位无符号数据,单位是微妙。

对于 RPDO 的通讯对象 0x1400~0x1403, 用来设置 RPDO 传输的特性, 当使用同步报文传输机制, 属性定义参考下表。

		1 3.10 II	しつ 週間の 歌	←加+
索引	子索引	名称	数值	说明
0.1400	01	COB-ID	0x200 +node_ID	不支持修改
0x1400	02	传输类型	1-240	同步传输周期

表 3.10 TPDO 通讯对象详解

对于 RPDO 而言, 从站收到主站发出的同步帧, 且收到同步的 RPDO, 在下一个同步时刻, 将 RPDO 的数据更新到从站, 同步周期等于(0x1400-02)*(0x80周期)。

对于 TPDO 的通讯对象 0x1800~0x1803,用来设置 TPDO 传输的特性,当使用同步报文传输机制,属性定义参考下表。

	表 3.11 IPDO 通讯对家详解				
索引	子索引	名称	数值	说明	
	00	字索引个数	5	不支持修改	
	01	COB-ID	0x180 +node_ID	不支持修改	
0x1800	02	传输类型	1-240	同步传输	
	03	禁止时间			
	04				
	05	事件时间			

表 3 11 TPDO 通讯对象详解

当 0x1800-02 = 0 时,只要数据改变,在下一个同步帧时刻立即将 TPDO 的数据发送;

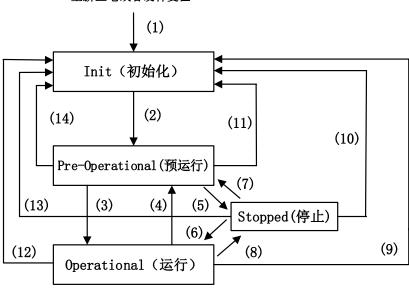
当 0x1800-02 = 1~240 时,收到相应的同步帧时,不管数据是都改变,立即发送 PDO,同步周期等于 (0x1800-02) * (0x80 周期)。

3.1.6 PDO 映射对象

。PDO 配置的过程称 PDO 映射,对于映射对象 0x1600~0x1603 和 0x1A00~0x1A03,用于配置 PDO 传输的对象字典,默认的 TPDO 和 RPDO 仅仅配置了一对,剩余的 3 对为空白,供用户自由配置。 表 3.12 第一对 PDO 映射内容

	索引	子索 引		索引内容		
		00H		03H		
1st	0x1A00		Index	Size	Name	
TxPDO	子索引内	01H	0x6041	2.0	StatusWord	
	容可变	02H	0x6061	1.0	Modes of Operation Display	
		03H	0x6064	4.0	PositionActualValue	
	索引	子索 引	索引内容			
		00H			03H	
1st	0x1600		Index	Size	Name	
RxPDO	子索引内	01H	0x6040	2.0	ControlWord	
	容可变	02H	0x6060	1.0	Modes of Operation	
		03H	0x607A	4.0	Target Position	

说明:


- 1) 每个映射对象的子索引最大个数是8个, 总数据长度是8个字节;
- 2) PDO 映射的内容中, 务必确保每个对象字典的数据长度以及属性正确, 比如对象字典 0x6040 只能配置在 RPDO 映射对象中, 如果配置到 TPDO 的映射对象就会报错。
- 3) PDO 映射对象只能用来映射对象字典,不能决定 PDO 传输特性;
- 4) 0x1400~0x1403, 0x1800~0x1803 用来设置 PDO 传输特性。

3.2 网络管理对象 (NMT)

3.2.1 NMT 服务

NMT 即 CAN 网络管理系统,用于控制整个网络中所有节点的通讯状态机,NMT 主机负责发送 NMT 指令,从节点仅响应指令即可。所有从设备必须支持 NMT 功能,并且一个 CAN 网络中有且只有一个 NMT 主机。

NMT 报文发送的 COB-ID 固定为" 0x000"。

重新上电或者硬件复位

图 3.2 CANopen 中从机 NMT 状态跳转

农 3.13 10011 机心止移成功			
步骤	动作说明		
1	上电或者硬件复位自动进入 NMT 初始化状态		
2	NMT 初始化完成,进入预操作状态		
3	预操作完成,启动远程节点,进入运行状态'		
4, 7	由运行或停止状态进入预操作状态		
5, 8	由预操作或运行状态进入停止状态		
6	由停止状态进入运行状态,启用远程节点		
9, 10, 11	复位远程节点		
12, 13,	复办运租共占的 第四		
14	复位远程节点的通讯		

表 3.13 NMT 状态迁移说明

只有 CAN 网络的主控节点可以发送 NMT 指令,且 NMT 指令不需要应答,指令参考下表。 表 3.14 NMT 控制指令

NMT 指令	说明	实现功能
0x1 =1	启动远程节点	开启所有通讯服务状态进入 OP
		停止 CAN 节点数据通讯(心跳除外);
0x2 =2	停止远程节点	由 OP 或 Pre-OP 进入 Stop
0x80=128	 进入预操作状态	仅允许 SDO 激活,PDO 不激活,
UX6U=126	一进入了则架1F4人心	OP 或者 STOP 进入 Pre-OP
0x81=129	复心 共占	通讯参数重新配置, 重新开始通讯
0x81=129 复位节点		进入 Initial 状态
0x82=130	复位通讯	进入 Initial 状态

3.2.2 心跳保护

通过节点保护功能,主机可以知道网络中所有从节点的当前状态,心跳时间不宜设置过短,会加大 CAN 网络负担,造成网络瘫痪。

控制器通过配置 0x1017, 为驱动器设置一个心跳时间间隔, 当 0x1017 数值不为零,则激活心跳功能,驱动器则会按照 0x1017 设置的时间间隔,周期的发送驱动器当前 NMT 状态。

心跳报文的格式参考下表。

表 3.15 心跳报文的格式

COB-ID	数据内容
0x700+node_ID	状态 (0: 启动; 4: 停止; 5: 运行; 127: 预操作状态)

当主站(运动控制器)通过对象字典 0x1017 成功激活从站(驱动器)后,因为从站是按照 0x1017设置的时间间隔来发送心跳报文,主站只要在规定时间内没有收到心跳报文,则认为从站掉线。

主站的规定时间一般是 0x1017 的 2.5 倍以上。

3.3 CiA402 功能设定

3.3.1 驱动器状态控制

CANopen 通讯型驱动器按照标准 CiA402 协议规定的流程切换伺服驱动器状态,对象字典 0x6040(Control Word)操作驱动器运行状态,同时读取 0x6041(StatusWord)确认状态跳转是否正确。需要注意的是任何状态的跳转或者切换都结合了驱动器内部或者外部的具体条件响应,例如:驱动器的功率控制板没有供电,驱动器的状态是无法进入电机轴锁定状态的(Operation Enabled)。详细的控制图参考图 3.3 。

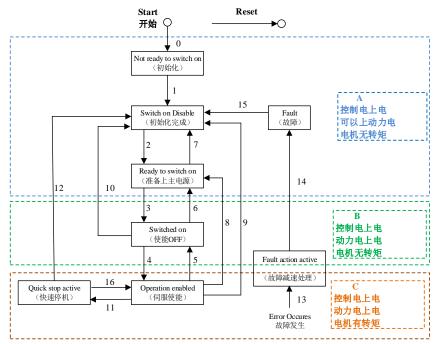


图 3.3 CiA402 状态机

如图 3.4 所示,状态机可分成 A/B/C 部分。控制电上电后,伺服单元将进行初始化,当初始化完成后,状态机自动的切换到 "Switch on disabled"状态,此后便可对单元进行配置。在进入到 Operation enable 状态之前,请注意配置参数是否正确,因为该状态下电机的转矩已经输出,如果参数配置不正确的话容易导致电机误动作。只要有报警状态出现,状态机将自动进入 "Fault"状态。表 3.16 为状态转换的动作说明。

CiA402 状态切换 步骤说明 步骤 步骤名称 0 AutoSkip 上电后或者驱动器复位后自动跳转 **AutoSkip** 初始化完成后自动跳转 2 ShutDown 接受到 0x6040 的 ShutDown 指令 3 SwitchOn 动力电上电后接受到 0x6040 的 SwitchOn 指令 4 EnableOperation 接收到 0x6040 的 EnableOperation 指令 5 DisableOperation 接收到 0x6040 的 DisableOperation 指令 动力电上电时,接收到 0x6040 的 ShutDown 指令; 6 ShutDown 检测到动力电断开时,进入该步骤 接收到 0x6040 的 DisableVoltage 指令; 7 DisableVoltage CANopen 状态机进入 Init 的情况; 8 ShutDown 动力电上电时,接收到 0x6040 的 ShutDown 指令; 接收到 0x6040 的 ShutDown 指令; 9 DisableVoltage 检测到动力电断开时,进入该步骤 接收到 0x6040 的 DisableVoltage 指令; 10 DisableVoltage CANopen 状态机进入 Init 的情况; **Quick Stop** 11 接收到 0x6040 的 QuickStop 指令; 12 DisableVoltage 0x605A 停机方式选择 1-3,停机后执行该步骤

表 3.16 CiA402 状态机动作切换

13	ErrorOccurs	发生故障时,自动进入该状态
14	AutoSkip	故障停机完成后,自动进入该状态
15	FaultReset	排除故障后,接收到 0x6040 的 FaultReset 指令
16	Enable Operation	0x605A 停机方式选择 5-7,停机后接收到 0x6040 的
16 EnableOperation		EnableOperation 指令

0x6040 和 0x6041 的数据定义如下,详细解读参考表 3.17 和表 3.18 。

索引	子索引							
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值
6040	00	ControlWord	UINT16	0~65535	RW	RxPDO	所有模式	0
6041	00	StatusWord	UINT16	0~65535	RO	TxPDO	所有模式	0

表 3.17 0x6040 控制字设置

		2010江前了及直
Bit 位	名称	说明
0	Switch On 准备运行	0-无效; 1-有效
1	Enable Voltage 接通动力电	0-无效; 1-有效
2	Quick Stop 快速停机	0-有效; 1-无效
3	Enable Operation 伺服使能	0-无效; 1-有效
4~6	Operation mode specific 运行模式相关	与各运行模式*相关
7	Fault Reset -故障复位	对于可复位的故障或警告,执行复位操 作,上升沿有效
8	Halt -暂停	暂停操作,各运行模式*的暂停方式不同
9~15	Reserved 厂家自定义	

^{*} 各运行模式是指 CiA402 中对象字典 0x6060 规定的伺服驱动器的控制模式。

表 3.18 0x6041 状态字解读

Bit 位	名称	说明
0	Ready to Switch ON	0-无效;
U	伺服准备好	1-有效
1	Switch ON 可以运行伺服	0-无效; 1-有效
2	Operation Enabled	0-无效;
2	伺服已经使能	1-有效
3	Fault 故障	0-无效; 1-有效
4	Voltage Enabled	0-无效;

	伺服可以使能	1-有效
5	Quick Stop 快速停机	0-有效; 1-无效
6	Switch On Disable	0-无效;
0	可以使能伺服	1-有效
7	Warning 警告	0-无效; 1-有效
8	Manufacturer Specific	未分配状态
9	Remote 控制字是否生效	0-无效; 1-有效
10	Target Reach 目标到达	0-无效; 1-有效
11	Internal limit active	0-无效;
11	内部软限位激活	1-有效
12~13	Operation mode specific	 参考伺服各运行模式说明
12~13	运行模式相关	多亏问服台丝11保工成明
14	Manufacturer Specific	
14	厂家自定义	未分配状态
15	Home Find 原点已找到	0-无效; 1-有效

3.3.2 指令极性设置

索引	子索引							
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值
607E	00	指令极性	UINT8	0~255	RW	RxPDO	所有模式	0

设置运动控制器指令(位置指令、速度指令、转矩指令)极性,亦可理解为对指令进行取反操作,详细说明参考表 3.19。

Bit 位 名称 说明 备注 0~4 未定义 0-无效 5 转矩指令极性取反 PT 模式:对 0x6071 目标转矩取反 1-转矩指令*(-1) 0-无效 速度指令极性取反 PV 模式:对 0x60FF 目标速度取反 6 1-速度指令*(-1) 0-无效 7 位置指令极性取反 PP 模式:对 0x607A 目标位置取反 1-位置指令*(-1)

表 3.19 指令极性取反操作

例如:驱动器工作在 PP 模式(0x6060=8) 运动控制器下发的指令不变,0x607E 设置不同,电机实际运转的曲线参考图 3.4 。

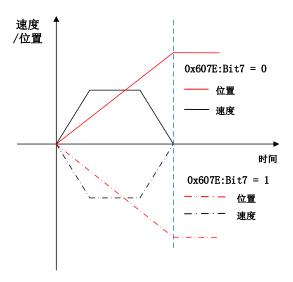


图 3.4 0x607E 指令极性设置与电机运转关系

3.3.3 电子齿轮设置

索 引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值
	00	子索引个数						2
6091 齿轮比	01	电机分辨率 Motor Revolu- tion	UINT32	0~ 2^32-1	RW	RxPDO	PP/PV/HM	1
	02	负载轴分辨率 Shaft Revolu- tion	UINT32	0~ 2^32-1	RW	RxPDO	PP/PV/HM	1

通过 0x6091 设置的 Gear Ratio 是一个大于 1 的数据。

Gear Ratio =
$$\frac{0x6091:01}{0x6091:02}$$

电机轴分辨率 (不等于编码器分辨率, 固定为 223=8388608 不可更改)。

负载轴的分辨率取决于客户的具体机械情况,参考下面示例说明。

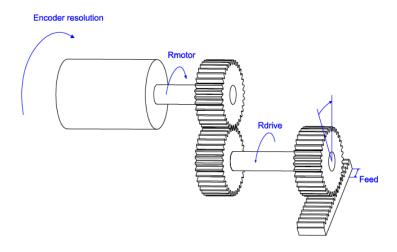


图 3.5 转换因子设置

如图 3.5 描述: 驱动器的 Encoder resolution 固定为 8388608。

控制要求:减速箱传动比为 100:1,控制器下发 0x607A (目标位置) =8388608, 电机轴转动 100

圈 (Rmotor = 100), 负载轴转动一圈 (Rrive = 1))。

那么以下设置成立:

- 1) 0x6091 默认值计算的 Gear Ratio =1, 此时运动控制器下发 0x607A (目标位置) =8388608, 那么电机轴转动 1 圈 (Rmotor =1), 负载轴转动 0.01 圈 (Rdrive = 0.01);
- 2) 因为齿轮箱的减速比为 100: 1, 所以 0x6091 设置为:

Gear Ratio =
$$\frac{0x6091:01 = 100}{0x6091:02 = 1} = 100$$

3) 此时运动控制器仍然下发 0x607A = 8388608, 那么电机轴转动 100 圈 (Rmotor = 100), 负载轴转动 1 圈 (Rdrive = 1);

注意:

- 1. 因为减速机或者齿轮箱是一种降低转速增加转矩的机械设备,因此 Gear Ratio 数值不能小于 1,否则驱动器将会报错(齿轮比设定错误);
- 2. 因为 Gear Ratio 的存在,使得运动控制器的运动路径规划可以忽略中间传递环节,但是务必注意安全,例如 Gear Ratio = 1 时,运动控制器规划速度为 50 转/秒,匀速转动 10 秒,电机轴大约转动 500 圈,这样设置是安全的;但是如果设置 Gear Ratio = 100,此时运动控制器不做任何修改,实际的电机转速将是 50*100 转/秒,电机轴转动位置将是 500*100 = 50000 圈。

3.3.4 位置到达阈值

索引	子索引							
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值

6067	00	位置到达阈值 Position window	UINT32	0 ~ (2^32-1)	RW	RxPDO	PP/HM	5872
6068	00	位置到达时间窗口 Position window time	UINT16	0 ~ 65535 单位: ms	RW	RxPDO	PP/HM	0

位置控制模式且驱动器使能情况下,当 0x60F4 位置偏差实际值小于 0x6067,且时间到达 0x6068时,认为位置到达。在位置模式下,0x6041-Bit10置1。

3.3.5 位置偏差报警阈值

索引	子索引							
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值
		位置偏差报警						
6065	00	阈值	UINT32	0 ~	RW	RPDO	DD/LIM	25165824
6065	00	Following er-	UINTSZ	0xFFFFFFF	KVV	KPDO	PP/HM	23103024
		ror window						
6066	00	位置偏差时间	LINITAC	0 ~	DV4/	DDDO	DD/IIIA	1000
6066	00	累计	UNT16	0xFFFF	RW	RPDO	PP/HM	1000

当 0x60F4 位置偏差实际值大于 0x6065 时,且累计时间到达 0x6066 会发生位置偏差过大报警。在位置模式下,0x6041-Bit13 置 1 。

3.3.6 速度到达功能

索 引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值
(LIEX)	(LIEV)	口你	奴///大王	奴 国/心国	300	FDO	7工中以关上(秋火田
606D	00	速度到达阈值 Velocity window	UINT16	0~ 0xFFFF	RW	RPDO	PV	20
606E	00	速度到达阈值时间 Velocity window time	UNT16	0 ~ 0xFFFF	RW	RPDO	PV	0

速度控制模式且驱动器使能情况下,当 0x60FF 与实际速度反馈 0x606C 差值的绝对值(转化成 r/min) 小于 0x606D(单位 r/min),且时间到达 0x606E 时,认为速度到达。在 PV 模式下,0x6041-Bit10 置 1。

3.3.7 电机零速检测

索引	子索引							
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	PDO	控制模式	默认值

606F	00	零速阈值 Velocity threshold	UINT16	0~ 0xFFFF	RW	RPDO	PV	20
6070	00	零速阈值时间 Velocity threshold time	UNT16	0 ~ 0xFFFF	RW	RPDO	PV	0

速度控制模式且驱动器使能情况下, 实际速度反馈 0x606C 绝对值 (转化成 r/min) 小于 0x606F(单位 r/min), 且时间到达 0x6070 时,认为电机速度为零。在 PV 模式下,0x6041-Bit12 置 1。

3.4 停机设定

驱动器停机设置是指将电机轴从转动状态切换到静止状态的过程,该过程包含两个步骤: 1.电机速度下降到零的过程称为停机过程; 2.电机轴停止转动后维持的状态 称为停机状态。

停机过程中, 电机轴的减速方式比较多, 详细可参考 3.6.1 至 3.6.6 的介绍;

电机轴停止后, 电机轴可以维持自由或者锁定状态, 详细可参考 3.6.1 至 3.6.6 的介绍。

- 1)不合适的停机设定可能会造成人身伤害或财产损失,请务必确保安全的前提下设置合适的停机方式;
 - 2)驱动器发生停机之后, 务必检查停机原因, 排除故障后, 请重新接通电源;
 - 3)禁止带电检修设备, 防止误操作导致的伤害;
 - 4)发生超程停机后,请小心处理。

3.4.1 紧急停机

驱动器紧急停机时,关联的对象字典如下:

索引	子索引		数据类			控制	
(Hex)	(Hex)	名称	型	数值范围	SDO	模式	默认值
3000	20	急停转矩	UINT16	0 ~ 6000	RW	All	1000
6084	0	轮廓减速度 Profile Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
6085	0	急停减速度 Quick Stop Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
609A	0	回原点加速度 Homing Acceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555

驱动器在任何模式运行时,如果需要执行紧急停机操作,只需要将控制字的 0x6040-Bit2 置 0 (其他 Bit 位保持原数值不变),此时驱动器快速停机功能激活,通过 0x605A 设置的停机方式减速停机,直到电

机速度为零,完成停机操作,停机过程以及停机后状态参考表 3.20。 表 3.20 紧急停机动作定义

0x605A	停机动作	je i			
设定值	(所有控制模式都生效)				
0	自由停机	停机后保持自由状态			
1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持自由状态			
2	以 0x 6085 斜坡停机	停机后保持自由状态			
3	以 0x3000-32 紧急停止转矩停机	停机后保持自由状态			
4	NA	NA			
5	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持位置锁定状态			
6	以 0x6085 斜坡停机	停机后保持位置锁定状态			
7	以 0x3000-32 紧急停止转矩停机	停机后保持位置锁定状态			

3.4.2 伺服 OFF 停机

驱动器断开使能时, 停机方式关联的对象字典如下:

索引	子索引					控制	
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	模式	默认值
3000	20	急停转矩	UINT16	0 ~ 6000	RW	All	1000
6084	0	轮廓减速度 Profile Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
609A	0	回原点加速度 Homing Acceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555

驱动器在任何模式运行时,如果控制字的 0x6040-Bit3 置 0 (其他 Bit 位保持原数值不变),此时驱动器激活伺服 OFF 停机,通过 0x605C 设置的停机方式减速停机,直到电机速度为零,完成停机操作,停机过程以及停机后状态参考表 3.21。

表 3.21 伺服 OFF 停机动作定义

0x605C	停机动作					
设定值	(所有控制模式	都生效)				
-3	零速停机	停机后保持 DB 制动状态				
-2	DB 停机	停机后保持 DB 制动状态				
-1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持 DB 制动状态				
0	以 0x3000-32 紧急停止转矩停机	停机后保持自由状态				
1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持自由状态				

3.4.3 暂停停机

驱动器执行暂停功能时,	关联的对象字曲如下:

索引	子索引					控制	
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	模式	默认值
3000	20	急停转矩	UINT16	0 ~ 6000	RW	All	1000
6084	0	轮廓减速度 Profile Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
6085	0	急停减速度 Quick Stop Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
609A	0	回原点加速度 Homing Acceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555

驱动器在任何模式运行时,如果控制字的 0x6040-Bit8 置 1 (其他 Bit 位保持原数值不变),此时驱动器激活暂停功能,通过 0x605D 设置的停机方式减速停机,直到电机速度为零,完成停机操作,停机过程以及停机后状态参考表 3.22。

 0x605D
 停机动作

 设定值
 (所有控制模式都生效)

 1
 以 0x6084 (Homing 模式使用 609A) 斜坡停机
 停机后保持位置锁定状态

 2
 以 0x6085 斜坡停机
 停机后保持位置锁定状态

 3
 以 0x3000-32 紧急停止转矩停机
 停机后保持位置锁定状态

表 3.22 暂停停机动作定义

3.4.4 伺服警告停机

驱动器发生可复位故障时,驱动器自动进入停机状态,关联的对象字典如下:

索引	子索引					控制	
(Hex)	(Hex)	名称	数据类型	数值范围	SDO	模式	默认值
3000	20	急停转矩	UINT16	0 ~ 6000	RW	All	1000
6084	0	轮廓减速度 Profile Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
6085	0	急停减速度 Quick Stop Deceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555
609A	0	回原点加速度 Homing Acceleration	UINT32	0 ~ 0xFFFFFFF	RW	All	0x41555555

驱动器在任何模式运行时,如果发生可复位故障或者警告,此时驱动器立刻减速停机,通过 0x605E设置的停机方式减速停机,直到电机速度为零,完成停机操作,停机过程以及停机后状态参考表 3.23。

如果需要复位故障,待电机停止转动后,并排除故障原因,确保设备及人身安全后,将 0x6040-Bit7 置 1,即可完成故障复位。

0x605E	停机动作				
设定值	(所有控制模式都生效))			
-5	DB 停机	停机后保持 DB 制动状态*			
-3	以 0x3000-32 紧急停止转矩停机	停机后保持 DB 制动状态*			
-2	以 0x6085 斜坡停机	停机后保持 DB 制动状态*			
-1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持 DB 制动状态*			
0	NA	NA			
1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持自由状态			
2	以 0x6085 斜坡停机	停机后保持自由状态			
3	以 0x3000-32 紧急停止转矩停机	停机后保持自由状态			

表 3.23 警告停机动作定义

注: *RS2E 无 DB 制动

3.4.5 伺服故障停机

当驱动器较为严重的故障,统称为不可复位故障 (参考 9.1 节故障一览表),此时驱动器会抛弃剩余指令,立刻进入故障停机,该种停机方式可通过参数 P00.1D 设置,详细参考表 3.24 。

表 3.24 故障停机动作定义

P00.1D	停机动作		
设定值	(所有控制模式都生效)		
0	自由停机	停机后保持自由状态	

3.4.6 超程停机停机

当电机运转可能造成机械部分超出安全移动范围时,此时可以将限位开关信号输入驱动器 DI 口,并设置参数 P00.1C 选择合适的超程停机方式,详细参考表 3.25 。

表 3.25 超程停机动作定义

P00.1C	停机动作			
设定值	(Homing 模式无效)			
0	自由停机	停机后保持自由状态		
1	零速停机	停机后保持自由状态		
2	零速停机	停机后保持位置锁定		
3	以 0x6084 斜坡停机	停机后保持自由状态		
4	以 0x6084 斜坡停机	停机后保持位置锁定		

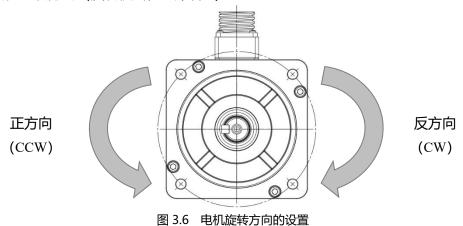
3.5 基本功能设定

3.5.1 控制模式设定

在使用 CANopen 通讯型驱动器的 CANopen 功能之前,需要手动配置驱动器参数,才能使得驱动器和运动控制器顺利建立通讯,主要包含控制模式、站号、等设置,用户可通过操作面板、上位机调试软件设置驱动器参数,也可以通过运动控制器使用 SDO 修改驱动器参数,需要设置的参数见表 3.26。

对象字典	驱动器面 板参数号	参数名称	参数详解	默认值
0x3082.01	P82.01	CANopen 从站 地址	手动设置驱动器站号,同一网络中不允许出现节点相同的地址。	1
0x3082.02	P82.02	CANopen 从站 波特率	手动设置驱动器波特率,默认是 5 表示 500K Kbit/s	5

表 3.26 RS2C/RS2E 使用 CANopen 模式需要设置的参数


3.5.2 旋转方向设定

	名称	数值范围	单位	出厂值	设置方式	生效方式
P000B	运转方向选择	0 ~ 1	1	0	停机设定	再次上电生效

设置电机轴旋转方向:

0:以 CCW 方向为正转方向 (A 超前 B);

1: 以 CW 方向为正转方向 (反转模式, A 滞后 B)

3.5.3 制动电阻设定

	名称	数值范围	单位	出厂值	设置方式	生效方式
P0029	再生制动方式	0 ~ 3	1	0	停机设定	立即生效

伺服电机在减速刹车过程中,能量会从负载端传递到直流母线,如果回馈的能量过大,此时需要制动 电阻释放该部分能量,否则驱动器有可能报警或者损坏。

表 3.27 再生制动方式说明

	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
设定值	再生制动方式	说明			
0	使用内置电阻	根据内置电阻功率和阻值进行再生制动电阻过载保护动作。			
1	使用外置电阻	根据外置电阻功率和阻值进行再生制动电阻过载保护动作。			
2	预留				
3	无	不使用再生制动电阻,通过内置电容处理全部的再生电力。			

不同功率下制动方式不同,请参照驱动器具体规格设置该参数。

内部制动电阻和外部制动电阻不可同时使用,请注意硬件接线的正确

使用外置再生放电电阻时,请务必设置温度熔断器等外部保护。

使用内置再生电阻时,请勿设置为0以外的值。请勿触碰外置再生电阻。因为外置电阻呈高温状态,请在使用中注意安全,以免灼伤。

	名称	数值范围	单位	出厂值	设置方式	生效方式
P002A	再生电阻散热系数	10 ~100	1	50	停机设定	立即生效

根据外置再生电阻的散热状态调整再生电阻散热系数大小。如果使用内置再生电阻请设为出厂值。

表 3.28 再生电阻散热系数说明

再生电阻散热速度	再生电阻散热系数
快	大
1	1
慢	小

自冷方式(自然对流冷却)时:建议设定为30%以下。

强制风冷方式时:建议设定为50%以下。

请根据实际散热状态设置再生电阻散热系数以免由于设置不当造成再生放电电阻异常发热,导致烧损。使用外置再生放电电阻时,请务必设置温度熔断器等外部保护。

再生放电电阻有可能出现异常发热,导致烧损,这与再生放电电阻过载保护的有效/无效无关。

	名称	数值范围	单位	出厂值	设置方式	生效方式
P002E	外置再生电阻阻值	1~1000	Ω	50	停机设定	立即生效

请根据制动电阻铭牌设置该数值。

选择外置再生电阻器时,请务必确认容量是否合适。

否则可能会导致人员受伤及火灾。

	名称	数值范围	单位	出厂值	设置方式	生效方式
P002F	外置再生电阻容量	1~ 65535	W	40	停机设定	立即生效

请根据制动电阻铭牌设置该数值。

选择外置再生电阻器时,请务必确认容量是否合适。

否则可能会导致人员受伤及火灾。

3.5.4 抱闸设定

	名称	数值范围	单位	出厂值	设置方式	生效方式
P0022	抱闸打开-指令接收延 迟时间	0~500	ms	100	随时设定	立即生效

请在抱闸打开并等待指令接收延迟时间(P0022)所设置的时间后,再输出上位装置对伺服单元的指令。

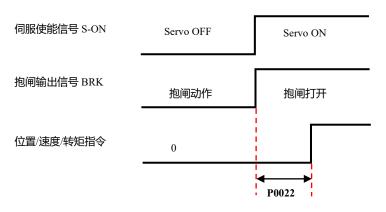


图 3.7 抱闸打开-指令接收延迟时间

	名称	数值范围	单位	出厂值	设置方式	生效方式
P0023	停止时抱闸动作-伺服 OFF 延迟时间	1~1000	ms	100	随时设定	立即生效

伺服电机停止时,如果伺服 ON 输入 (S-ON)信号 OFF,则 BRK 信号将同时 OFF。通过设定伺服 OFF 延迟时间 (P0023),可变更 BRK 信号 OFF 至实际电机不通电的时间。

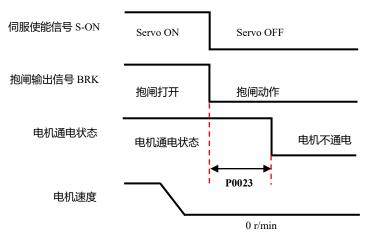


图 3.8 停止时抱闸动作-伺服 OFF 延迟时间

	名称	数值范围	单位	出厂值	设置方式	生效方式
P0024	运行时抱闸动作-伺服 OFF 延迟时间	1~1000	ms	300	随时设定	立即生效

伺服电机运行时,如果伺服 ON 输入 (S-ON) 信号 OFF,则 BRK 信号将在电机速度小于抱闸动作输 出速度值 (P0025)后 OFF。通过设定伺服 OFF 延迟时间 (P0024),可变更 BRK 信号 OFF 至实际 电机不通电的时间。

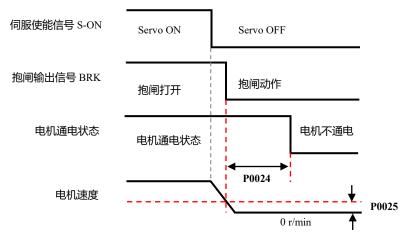


图 3.9 运行时抱闸动作-伺服 OFF 延迟时间

	名称	数值范围	单位	出厂值	设置方式	生效方式
P0025	抱闸动作速度值	0~3000	r/min	20	随时设定	立即生效

4 控制模式

RS2C 驱动器支持 CiA402 规定的 5 种控制模式, 如表 4.1, 0x6060 控制模式选择, 0x6061 控制模式显示。

0x6060 设定值	RA2C 控制模式	详解
0	预留	
1	轮廓位置模式-PP	控制器负责下发目标位置,驱动器内部规划曲线
2	预留	
3	轮廓速度模式-PV	控制器负责下发目标速度,驱动器内部规划曲线
4	轮廓转矩模式-PT	控制器负责下发目标转矩,驱动器内部规划曲线
5	预留	
6	回零模式-HM	用于寻找机械原点
7	插补模式-IP	控制器周期性下发目标位置,驱动器内部完成曲线规划

表 4.1 RS2C 驱动器支持的控制模式

4.1 轮廓位置模式 (PP- Profile Position Mode)

PP (Profile Position) 控制模式, 控制器会下发 0x607A (目标位置), 0x6081(轮廓速度), 0x6083(加速度), 0x6084 (减速度) 至伺服驱动器, 驱动器收到指令后, 内部规划位置, 同时完成位置/速度/转矩调节, 当前的位置值 0x6064 可实时读取。详细控制框图参考图 4.1。

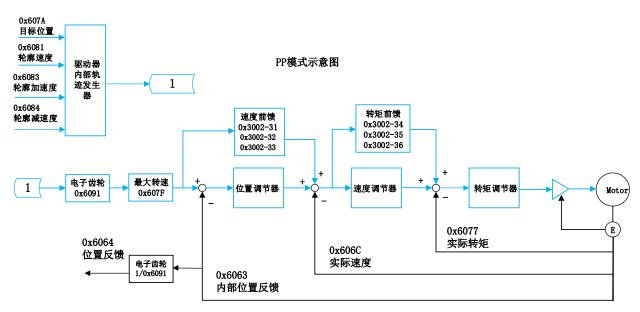
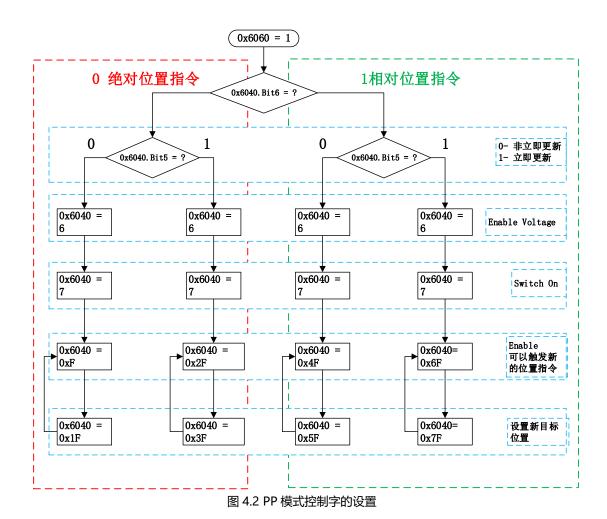


图 4.1 PP 控制框图


4.1.1 控制字与状态字

PP 模式控制字设置 (0x6040)

表 4.2 PP 模式时 0x6040 说明

		PP 模式-0x6040 控制字说明
Bit 位	名称	说明
0	Switch On	0-无效;
U	准备运行	1-有效
1	Enable Voltage	0-无效;
ı	接通动力电	1-有效
2	Quick Stop	0-快速停机;
	快速停机	1-正常工作
3	Enable Operation 伺服使能	1- 使能
4	New Set Point	0->1 上升沿的的时候触发新的目标位置 0x607A,
4	新目标位置	轮廓速度 0x6081, 0x6083 加速度, 0x6084 减速度
5	立即更新指令	0-等待当前位置执行完毕才会执行下一段位置;
J		1-中止正在执行的位置指令,立刻执行最新的位置指令
6	位置指令类型	0-绝对位置指令;
0	位自114 文王	1-相对位置指令
7	Fault Reset	 对于可复位的故障或警告,执行复位操作,上升沿有效
,	故障复位	に、上川には対象にM、この言葉が対象によりに、大川には対象に、大川には対象による。
8	Ualt 斩值	0-无效;
0	Halt 暂停	1-按照 0x605D 设置,进入暂停

在 PP 模式 Bit4 至 Bit6 的设置方式参考图 4.2 。

2) PP 模式状态字解读 (0x6041)

表 4.3 PP 模式时 0x6041 说明

	PP 模式-0x6041 状态字							
Bit 位	名称	说明						
0	Ready to Switch ON	0-无效;						
U	伺服准备好	1-有效						
1	Switch ON	0-无效;						
'	可以运行伺服	1-有效						
2	Operation Enabled	0-无效;						
	伺服已经使能	1-有效						
3	Fault 故障	0-无效; 1-有效						
4	Voltage Enabled	0-无效;						
4	伺服可以使能	1-有效						
5	Quick Stop	0-有效;						
J	快速停机	1-无效						
6	Switch On Disable	0-无效;						
0	不可以上电	1-有效						
7	Warning	0-无效;						
,	<u>敬</u> 生 言口	1-有效						

	PP 模式-0	x6041 状态字
Bit 位	名称	说明
9	Remote 控制字是否生效	0-无效; 1-有效
10	Target Reach 目标到达	0-无效; 1-有效 目标位置到达
11	Internal limit active 内部软限位激活	0-无效; 1-有效 位置指令或反馈超限
12	Set-point acknowledge 目标位置更新	0-可更新目标位置; 1-不可更新目标位置
13	Following Error 跟随误差	0-无效; 1-有效 从站发生位置偏差过大故障
15	Home Find 原点已找到	0-无效; 1-有效 回零完成

4.1.2 PP 模式所有对象字典

所有 PP 模式相关的对象字典参考表 4.19 ,表中罗列的所有对象字典表示在 PP 模式下都支持,具体对象字典的功能设置,可参考 "CiA402 功能设定"。

索引 子索引 数据类 SDO PDO 名称 单位 默认值 (Hex) (Hex) RO 0 603F 00 错误码 UINT16 **TPDO** 6040 00 UINT16 RW **RPDO** 0 控制字 6041 UINT16 **TPDO** 0 00 状态字 RO 00 **RPDO** 0 6060 控制模式 INT8 RW 6061 00 INT8 RO **TPDO** 0 控制模式显示 6062 00 用户位置指令 DINT32 指令单位 RO **TPDO** 6063 编码器单位 RO 00 电机位置反馈 INT32 **TPDO** 6064 00 用户位置反馈 INT32 RO **TPDO** 指令单位 6065 00 RW **RPDO** 25165824 位置偏差过大阈值 UINT32 指令单位 6066 00 位置偏差大时间累计 UINT16 RW **RPDO** 1000 ms **RPDO** 734 6067 00 位置到达阈值 UINT32 指令单位 RW 6068 00 位置到达时间 UINT16 RW **RPDO** 0 ms 606C 00 用户实际速度反馈 INT32 指令单位/秒 RO **TPDO** 607A 00 指令单位 RW **RPDO** 0 目标位置 INT32 607E 00 UINT8 RW **RPDO** 0 极性设置 607F UINT32 RW 838860800 00 最大轮廓速度 指令单位/秒 **RPDO** 6081 00 UINT32 指令单位/秒 RW **RPDO** 13981013 轮廓速度 6083 00 UINT32 指令单位/秒^2 RW **RPDO** 1096111445 轮廓加速度 6084 00 轮廓减速度 UINT32 指令单位/秒^2 RW **RPDO** 1096111445

表 4.4 PP 模式关联的所有对象字典

索引 (Hex)	子索引 (Hex)	名称	数据类 型	单位	SDO	PDO	默认值
6001	01	电机轴分辨率	UINT32		RW	RPDO	1
6091	02	负载轴分辨率	UINT32		RW	RPDO	1
60F4	00	用户位置偏差	DINT32	指令单位	RO	TPDO	
60FC	00	电机位置指令	DINT32	指令单位	RO	TPDO	

4.1.3 PP 模式使用方法

1) 立即更新模式,是指驱动器在接受目标位置 0x607A 之后,立刻执行新规划的位置.

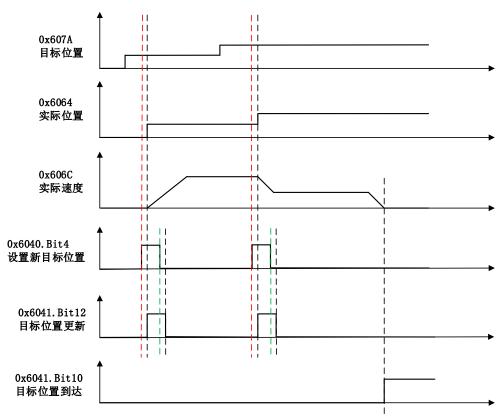


图 4.3 PP 模式立即更新位置的控制方式

如图 4.3 的描述:

- ➤ 运动控制器在先下发了第一段目标位置 0x607A, 此时驱动器并不响应位置曲线, 当 0x6040.Bi4 有上升沿时,驱动器立刻执行目标位置,电机转动,随后在极短的时间内,0x6041.Bit12 被置 1, 这是启动过程;
- ▶ 0x6040.Bit4 仅仅用来触发新的目标位置,因此每段位置触发完毕之后,就可以置 0,等待下一段位置触发,但是为了确保驱动器内部能够准确响应,请确保 0x6040.Bit4 等于 1 的时间应大于 1 秒;
- ▶ 当 0x6040.Bit4 从 1->0 之后, 0x6041.Bit12 随之也被置 0, 表示驱动器可以接受新的目标位置;
- > 当控制器需要执行新的位置曲线,下发第二段目标位置 0x607A,随后 0x6040.Bit4 从 0->1 之后,驱动便会立即执行新的目标位置。

- 所以综上描述,立即更新模式时,驱动器时刻响应控制器下发最新的目标位置,当前时刻正在执行的位置曲线随时可以抛弃。
- 2) 非立即更新模式,是指驱动器始终将接受到的目标位置 0x607A 执行完毕,

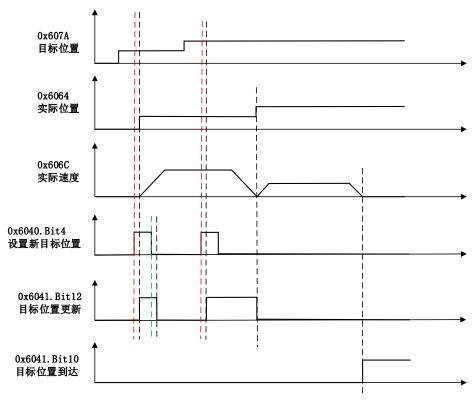


图 4.4 PP 模式非立即更新位置的控制方式

如图 4.4 的描述:

- ➤ 运动控制器在先下发了第一段目标位置 0x607A, 此时驱动器并不响应位置曲线, 当 0x6040.Bi4 有上升沿时,驱动器立刻执行目标位置,电机转动,随后在极短的时间内,0x6041.Bit12 被置 1, 这是启动过程;
- ▶ 当驱动器还在执行第一段位置过程中,控制器下发了第二段目标位置 0x607A,并且 0x6040.Bit4 从 0->1 触发了第二段目标位置,此时驱动器会接受第二段目标位置,保存至驱动器缓存,同时 0x6041.Bit12 被置 1,表明驱动器已经接受了第二段目标位置,但是需要等待第一段位置曲线执 行完毕;
- ➤ 第一段曲线执行完毕后,驱动器会执行第二段位置曲线,执行第二段位置曲线时,0x6041.Bit12 被置 0,表示驱动器可以接受新的目标位置;
- 综上描述,非立即更新模式时,驱动始终会将接受到的位置曲线执行完毕才会响应下一段目标位置,就是接受到的目标位置 0x607A 都会执行。

4.1.4 PDO 配置建议

下表配置只是 PP 模式使用必要的对象字典,实际使用可根据需要修改。

Pr VC-VC-VC-DC-C					
PDO 属性	对象字典	备注			
	0x6040 控制字	必须			
	0x6060 控制模式	可选			
RPDO	0x607A 目标位置	必须			
IN DO	0x6081 轮廓速度	必须			
	0x6083 加速度	可选			
	0x6084 减速度	可选			
	0x6041 状态字	必须			
TPDO	0x6064 实际位置	必须			
	0x6061 控制模式显示	可选			

表 4.5 PP 模式建议的配置

4.2 轮廓速度模式 (PV- Profile Velocity Mode)

PV (Profile Velocity) 控制模式下,控制器会下发 0x60FF 目标速度至伺服驱动器,驱动器收到指令更新后,内部完成速度/转矩调节, 0x607C 速度反馈可实时读取。详细控制框图参考图 4.5。

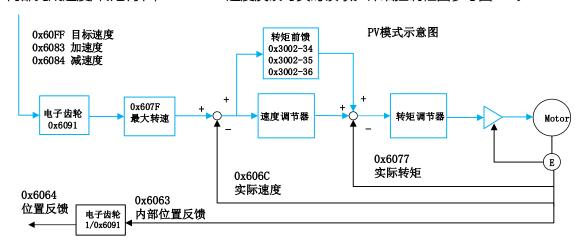


图 4.5 PV 控制框图

4.2.1 控制字与状态字

1) PV 模式控制字设置 (0x6040)

	表 4.0 PV 悮丸的 UXOU4U 呪明					
	PV 模式-0x6040 控制字说明					
Bit 位	名称	说明				
0	Switch On	0-无效;				
0	准备运行	1-有效				
1	Enable Voltage	0-无效;				
ı	接通动力电	1-有效				
2	Quick Stop	0-快速停机;				
	快速停机	1-正常工作				

表 4.6 PV 模式时 0x6040 说明

3	Enable Operation 伺服使能	1-使能		
7	Fault Reset 故障复位	对于可复位的故障或警告,执行复位 操作,上升沿有效		
8	Halt 暂停	0- 无效; 1- 按照 0x605D 设置,进入暂停		

2) PV 模式状态字解读 (0x6041)

表 4.7 PV 模式时 0x6041 说明

PV 模式-0x6041 状态字					
Bit 位	名称	说明			
0	Ready to Switch ON	0-无效;			
0	伺服准备好	1-有效			
1	Switch ON	0-无效;			
	可以运行伺服	1-有效			
2	Operation Enabled	0-无效;			
	伺服已经使能	1-有效			
3	Fault 故障	0-无效; 1-有效			
4	Voltage Enabled	0-无效;			
4	伺服可以使能	1-有效			
5	Quick Stop	0-有效;			
J	快速停机	1-无效			
6	Switch On Disable	0-无效;			
0	不可以上电	1-有效			
7	Warning	0-无效;			
,	<u>警</u> 告	1-有效			
10	Target Reach	0-无效;			
10	目标到达	1-有效 目标速度到达			
12	Speed is Zero	0-无效;速度不等于零			
12	零速标志	1-有效 速度为零			

4.2.2 PV 模式所有对象字典

所有 PV 模式相关的对象字典参考表 4.23 , 表中罗列的所有对象字典表示在 PV 模式下都支持, 具体对象字典的功能设置, 可参考 "CiA402 功能设定"。

表 4.8 PV 模式关联的所有对象字典

			DV- 07 (DVH =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
索引	子索引	名称	数据类型	单位	SDO	PDO	默认值
(Hex)	(Hex)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	口你 — — — — — — — — — — — — — — — — — — —	中位	300	100	款(V)[目
603F	00	错误码	UINT16		RO	TPDO	0
6040	00	控制字	UINT16		RW	RPDO	0
6041	00	状态字	UINT16		RO	TPDO	0

索引	子索引	名称	粉块米型	単位	SDO	PDO	默认值
(Hex)	(Hex)	<u> </u>	数据类型 单位		300	PDO	
6060	00	控制模式	INT8		RW	RPDO	0
6061	00	控制模式显示	INT8		RO	TPDO	0
606C	00	用户实际速度反馈	INT32	指令单位/秒	RO	TPDO	
6072	00	最大转矩	UINT16	0.10%	RW	RPDO	3000
6077	00	实际转矩	INT16	0.10%	RO	TPDO	0
607E	00	极性设置	UINT8		RW	RPDO	0
607F	00	最大速度	UINT32	指令单位/秒	RW	RPDO	838860800
6083	6003	00 加速度	0-	指令单位/秒	F3.4.4	RPDO	1096111445
6063	00		0xFFFFFFF	^2	rw		
6084	00	00 学生序	0-	指令单位/秒	F3.4.4	RPDO	1096111445
0004	00	减速度 	0xFFFFFFF	^2	rw	KPDO	1096111445
6001	01	电机轴分辨率	UINT32		RW	RPDO	1
6091	02	负载轴分辨率	UINT32		RW	RPDO	1
60B1	00	速度偏置	INT32	指令单位/秒	RW	RPDO	0
60B2	00	转矩偏置	INT32	0.10%	RW	RPDO	0
60FF	00	目标速度	INT32	指令单位/秒	RW	RPDO	0

4.2.3 PV 模式使用操作步骤

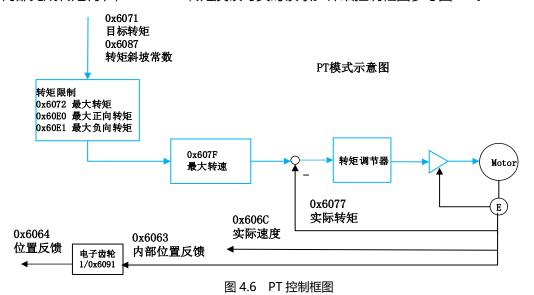
PV 模式的使用步骤参考表 4.9。

表 4.9 PV 模式操作步骤

功能	对象字典	PDO/SDO 属性	说明		
	0x6060	RPDO	主站设置模式 3		
控制模式设置	0,0000	或者 SDO 写	工机权自庆和。		
江即州关北以直	0x6061	TPDO	 从站反馈,主站判断是否为 3		
	0,0001	或者 SDO 读			
	0x6040	RPDO	依次设置 6->7->15 使能		
	0x60 4 0	或者 SDO 写	故障复位:下发 128		
驱动器状态获	0x6041	TPDO	<u> </u>		
取和控制	UX0U41	或者 SDO 读	驱动器使能过程中以及使能后,一直		
	0x603F	TPDO	读取驱动器状态,一旦状态不对,就会		
	UXOUSF	或者 SDO 读	断开使能。 		
	٥٧٤٥٢٢	RPDO	主让工<u>华</u>的 海 库 <u></u>		
	0x60FF	或者 SDO 写	主站下发的速度指令。		
油 亩比 《下 化	0x6083	RPDO	主站下发的加速度指令。		
速度指令下发	0x0063	或者 SDO 写	土站下及的加速度指令。		
	0x6084	RPDO	-		
	UX0U84	或者 SDO 写	主站下发的减速度指令。		
			_		

** 中心	0X606C	TPDO	主站监控驱动器实际的执行是否准
速度指令上传	0X606C	或者 SDO 读	确。

4.2.4 PDO 配置建议


下表配置只是 PV 模式使用必要的对象字典,实际使用可根据需要修改。

PDO 属性 备注 对象字典 0x6040 控制字 必须 **RPDO** 目标速度 0x60FF 必须 0x6060 控制模式 可选 0x6041 状态字 必须 **TPDO** 0x606C 实际速度 必须 0x6061 控制模式显示 可选

表 4.10 PV 模式建议的配置

4.3 轮廓转矩模式 (PT- Profile Torque Mode)

PT (Profile Torque) 控制模式下,控制器会下发 0x6071 目标转矩至伺服驱动器,驱动器收到指令更新后,内部完成转矩调节,0x6077 转矩反馈可实时读取。详细控制框图参考图 4.6。

4.3.1 控制字与状态字

1) PT 模式控制字设置 (0x6040)

Z [ZZ44] exec to 36.73					
	PT 模式-0x6040 控制字说明				
Bit 位	名称	说明			
0	Switch On	0-无效;			
U	准备运行	1-有效			
1	Enable Voltage	0-无效;			
ļ	接通动力电	1-有效			
2	Quick Stop	0-快速停机;			
	快速停机	1-正常工作			
3	Enable Operation 伺服使能	1-使能			
7	Fault Reset	对于可复位的故障或警告,执行复位			
,	故障复位	操作,上升沿有效			
8	Halt 暂停	0-无效;			
0	Hail 肖伊	1-按照 0x605D 设置,进入暂停			

表 4.11 PT 模式时 0x6040 说明

2) PT 模式状态字解读 (0x6041)

表 4.12 PT 模式时 0x6041 说明

PT 模式-0x6041 状态字				
Bit 位	名称	说明		
0	Ready to Switch ON	0-无效;		
U	伺服准备好	1-有效		
1	Switch ON	0-无效;		
I	可以运行伺服	1-有效		
2	Operation Enabled	0-无效;		
	伺服已经使能	1-有效		
3	Fault 故障	0-无效;		
3	rauit 政陣	1-有效		
4	Voltage Enabled	0-无效;		
4	伺服可以使能	1-有效		
5	Quick Stop	0-有效;		
J	快速停机	1-无效		
6	Switch On Disable	0-无效;		
0	不可以上电	1-有效		
7	Warning	0-无效;		
/	<u> </u>	1-有效		
10	Target Reach	0-无效;		
10	目标到达	1-有效 目标转矩到达		

4.3.2 PT 模式所有对象字典

所有 PT 模式相关的对象字典参考表 4.13 ,表中罗列的所有对象字典表示在 PT 模式下都支持,具体对象字典的功能设置,可参考 "CiA402 功能设定"。

索引	子索引	名称	数据类型	单位	SDO	PDO	默认值
(Hex)	(Hex)	口小			300	100	
603F	00	错误码	UINT16		RO	TPDO	0
6040	00	控制字	UINT16		RW	RPDO	0
6041	00	状态字	UINT16		RO	TPDO	0
6060	00	控制模式	INT8		RW	RPDO	0
606C	00	用户实际速度反馈	INT32	指令单位/秒	RO	TPDO	0
6071	00	目标转矩	INT16	0.10%	RW	RPDO	0
6072	00	最大转矩	UINT16	0.10%	RW	RPDO	3000
6074	00	内部转矩指令	INT16	0.10%	RW	RPDO	
6077	00	实际转矩	INT16	0.10%	RO	TPDO	0
607E	00	极性设置	UINT8		RW	RPDO	0
607F	00	最大轮廓转速	UINT32	指令单位/秒	RW	RPDO	838860800
6087	00	转矩斜坡	UINT32	0.10% /s	RW	RPDO	4294967295
6001	01	电机轴分辨率	UINT32		RW	RPDO	1
6091	02	负载轴分辨率	UINT32		RW	RPDO	1
60B2	00	转矩偏置	INT32	0.10%	RW	RPDO	0
60E0	00	正向转矩限制	UINT16	0.10%	RW	RPDO	3000
60E1	00	负向转矩限制	UINT16	0.10%	RW	RPDO	3000

表 4.13 PT 模式关联的所有对象字典

4.3.3 PT 模式使用操作步骤

PT 模式的使用步骤参考表 4.14。

表 4.14 PT 模式操作步骤

农4.14 FT 保圳森FP少绿						
功能	对象字典	PDO/SDO 属性	说明			
	0x6060	RPDO	ナキトル平井十 10			
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	UX6060	或者 SDO 写	主站设置模式 10			
控制模式设置 	0x6061	TPDO	儿·大厅牌 于			
	UXOUOT	或者 SDO 读	从站反馈,主站判断是否为 10 			
	0x6040	RPDO	依次设置 6->7->15 使能			
驱动器状态获			故障复位:下发 128			
取和控制	0x6041	TPDO	驱动器使能过程中以及使能后,一直读取驱			
	0x603F	TPDO	动器状态,一旦状态不对,就会断开使能。			
	0x6071	RPDO	主站下发的速转矩指令。			
转矩指令下发	0x6072	RPDO	主站下发的最大转矩限制。			
	0x607F	RPDO	主站下发的最大转速限制。			
转矩指令上传	0X6077	TPDO	主站监控驱动器实际的执行是否准确。			

4.3.4 PDO 配置建议

下表配置只是 PT 模式使用必要的对象字典,实际使用可根据需要修改。

	N	
PDO 属性	对象字典	备注
	0x6040 控制字	必须
RPDO	0x6060 控制模式	必须
INF DO	0x6071 目标转矩	必须
	0x6072 最大转矩	可选
	0x6041 状态字	必须
TPDO	0x6077 实际转矩	必须
	0x6061 控制模式显示	可选

表 4.15 PT 模式建议的配置

4.4 插补位置模式 (IP- Interpolation Position Mode)

IP (Interpolated Position) 控制模式不同于 PP 模式一次性给定最终的目标位置,驱动器自身规划 曲线。在 IP 模式下,运动指令经过上位机控制器提前规划处理,周期性的下发至伺服驱动器,周期性是指 每个插补周期都会更新指令,驱动器接受到周期性的位移指令后,按照位置环控制周期对位移指令进行细分,驱动器内部完成位置、速度和转矩控制。此模式能够实现多轴同步控制,对于同步要求较高的场合,比较合适。详细控制框图参考图 4.7。

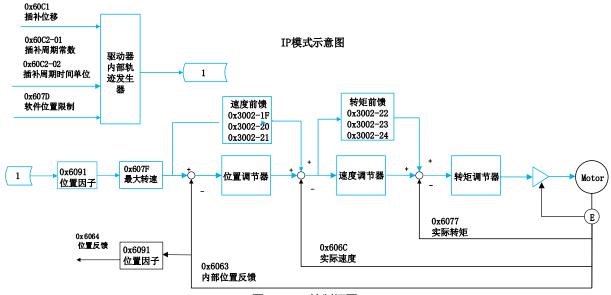


图 4.7 IP 控制框图

关于每个插补周期内的位置规划参考图 4.8,插补周期需要大于位置环控制周期 (125 微妙),在每个插补周期,驱动器内部会根据 0x60C1 目标位置精确规划内部位置指令。

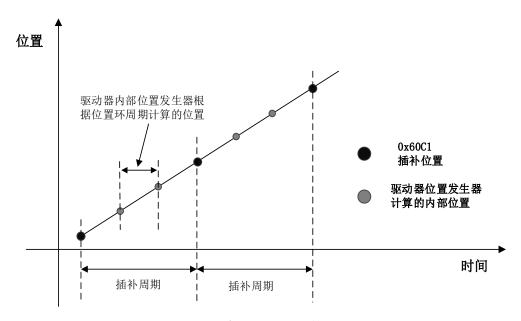


图 4.8 每个插补周期内位置规划

4.4.1 控制字与状态字

1) IP 模式控制字设置 (0x6040)

表 6.16 PP 模式时 0x6040 说明

	次 0.10 11 [天文明] 0.00 10 [6]				
	PP 模式-0x6040 控制字说明				
Bit 位	名称	说明			
0	Switch On	0-无效;			
U	准备运行	1-有效			
1	Enable Voltage	0-无效;			
ı	接通动力电	1-有效			
2	Quick Stop	0-快速停机;			
2	快速停机	1-正常工作			
Enable Operation		1 /±45			
3	伺服使能	1- 使能			
4	体纷击礼 #	0-使能无效;			
4	使能插补模式	1-使能插补,在插补过程中需要始终为 1			
5	立即再实长 人	0-等待当前位置执行完毕才会执行下一段位置;			
5	立即更新指令	1-中止正在执行的位置指令,立刻执行最新的位置指令			
7	Fault Reset	对工可复价的协会式敬华。协公复价银作。上书识专动			
/	故障复位	对于可复位的故障或警告,执行复位操作,上升沿有效 			
0		0-无效;			
8	Halt 暂停 	1-按照 0x605D 设置,进入暂停			

2) PP 模式状态字解读 (0x6041)

Bit 位 名称 说明 0 Ready to Switch ON 伺服准备好 0-无效; 1-有效 1 Switch ON 可以运行伺服 0-无效; 1-有效 2 Operation Enabled 伺服已经使能 0-无效; 1-有效 3 Fault 故障 0-无效; 1-有效
0 伺服准备好 1-有效 1 Switch ON 可以运行伺服 0-无效; 1-有效 2 Operation Enabled 伺服已经使能 0-无效; 1-有效 3 Fault 故障 0-无效; 1-有效
伺服准备好 1-有效 1 Switch ON 可以运行伺服 0-无效; 1-有效 2 Operation Enabled 伺服已经使能 0-无效; 1-有效 3 Fault 故障 0-无效; 1-有效
1 可以运行伺服 1-有效 2 Operation Enabled 伺服已经使能 0-无效; 1-有效 3 Fault 故障 0-无效; 1-有效
可以运行伺服 1-有效 2 Operation Enabled 伺服已经使能 0-无效; 1-有效 3 Fault 故障 0-无效; 1-有效
2 伺服已经使能 1-有效 3 Fault 故障 0-无效; 1-有效
伺服已经使能 1-有效 3 Fault 故障 0-无效; 1-有效
1 7 3 3 3 1 1 3 3 3
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Voltage Enabled 0-无效;
日本 日服可以使能 1-有效
Quick Stop 0-有效;
快速停机 1-无效
Switch On Disable 0-无效;
不可以上电 1-有效
Warning 0-无效;
· 警告 1-有效
9 Remote 0-无效;
控制字是否生效 1-有效
Target Reach 0-无效;
1-有效 目标位置到达
Internal limit active
内部软限位激活 1-有效 位置指令或反馈超限
12 插补模式状态 0-插补模式未激活;
12 插补模式状态 1-插补模式激活
Home Find 0-无效;
原点已找到 1-有效 回零完成

表 6.17 PP 模式时 0x6041 说明

4.4.2 IP 模式所有对象字典

所有 PP 模式相关的对象字典参考表 6.18 ,表中罗列的所有对象字典表示在 PP 模式下都支持, 具体 对象字典的功能设置,可参考_"CiA402功能设定"。

	表 6.18 PP 模式天联的所有对家子典						
索引	子索引	 名称	数据类	单位	SDO	PDO	默认值
(Hex)	(Hex)	П10,	型	+ 12	350	. 50	MMI
603F	00	错误码	UINT16		RO	TPDO	0
6040	00	控制字	UINT16		RW	RPDO	0
6041	00	状态字	UINT16		RO	TPDO	0
6060	00	控制模式	INT8		RW	RPDO	0
6061	00	控制模式显示	INT8		RO	TPDO	0
6062	00	用户位置指令	DINT32	指令单位	RO	TPDO	

索引 (Hex)	子索引 (Hex)	名称	数据类型	单位	SDO	PDO	默认值
6063	00	电机位置反馈	INT32	编码器单位	RO	TPDO	
6064	00	用户位置反馈	INT32	指令单位	RO	TPDO	
6065	00	位置偏差过大阈值	UINT32	指令单位	RW	RPDO	25165824
6066	00	位置偏差大时间累计	UINT16	ms	RW	RPDO	1000
6067	00	位置到达阈值	UINT32	指令单位	RW	RPDO	734
6068	00	位置到达时间	UINT16	ms	RW	RPDO	0
606C	00	用户实际速度反馈	INT32	指令单位/秒	RO	TPDO	
607E	00	极性设置	UINT8		RW	RPDO	0
6001	01	电机轴分辨率	UINT32		RW	RPDO	1
6091	02	负载轴分辨率	UINT32		RW	RPDO	1
60C1	01	插补位移	INT32		RW	RPDO	0
6063	01	插补周期常数	UINT8		RW	RPDO	1
60C2	02	插补周期指数	INT8	ms	RO	RPDO	-3
60F4	00	用户位置偏差	DINT32	指令单位	RO	TPDO	
60FC	00	电机位置指令	DINT32	指令单位	RO	TPDO	

4.4.3 IP 模式使用操作步骤

IP 模式的使用步骤参考表 6.19。

表 6.19 PV 模式操作步骤

TL AK	7.1.67.03 oth	PDO/SDO	\¥10		
功能	対象字典	属性	说明		
	0x6060	RPDO	主站设置模式 7		
	00000	或者SDO写	土垃圾直接式 /		
控制模式设置	0x6061	TPDO	从站反馈,主站判断是否为 7		
	0.0001	或者SDO读			
	0x60C2-01	SDO	插补周期常数, 默认为 10ms		
	0x60C1-01	RPDO	插补位移		
运动指令下发			使能: 依次设置 6->7->15		
	0x6040	RPDO	使能插补位置:使能状态->31		
			故障复位:下发 128		
位黑巨健	0.0000	TDDO	主站监控驱动器实际的执行是否准		
位置反馈	0X6063	TPDO	确。		

^{*}插补周期常数,数值范围 1ms~20ms;

4.5 原点回归模式 (HM- Homing Mode)

原点回归模式 0x6060 = 6,此时控制器将回零指令,回零的速度、加速度等下发至驱动器,驱动器内部规划运动轨迹,根据原点开关,左/右限位开关,编码器 Z 信号,实现回零的动作执行,执行完成后,返回成功标志位,详细控制参考图 4.9。

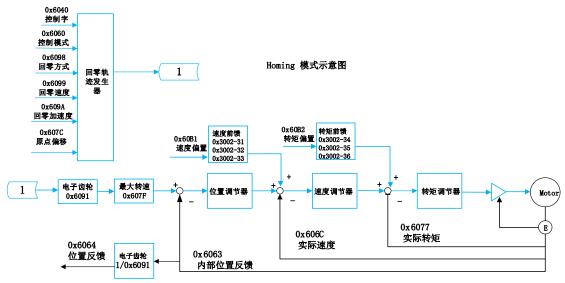


图 4.9 回原点模式控制框图

4.5.1 控制字与状态字

1) Homing 模式控制字设置 (0x6040)

表 4.20 Homing 模式时 0x6040 说明

农 4.20 Homing 模式的 0x0040 优奶					
	HM 模式-0x6040 控制字说明				
Bit 位	名称	说明			
0	Switch On	0-无效;			
0	准备运行	1-有效			
1	Enable Voltage	0-无效;			
1	接通动力电	1-有效			
2	Quick Stop	0-快速停机;			
2 快速停机		1-正常工作			
3	Enable Operation	1 使能			
3	伺服使能				
		0-回零没有激活;			
4	Homing Operation Start	0->1: 开始回零;			
4	启动回零	1-正在回零;			
		1->0: 回零停止			
7	Fault Reset	对于可复位的故障或警告,执行复			
/	故障复位	位操作,上升沿有效			
0	Uolt 転信	0-无效;			
8	Halt 暂停	1-按照 0x605D 设置, 进入暂停			

2) Homing 模式状态字解读 (0x6041)

表 4.21 Homing 模式时 0x6041 说明

	HM 模式-0x6	5041 状态字
Bit 位	名称	说明
0	Ready to Switch ON	0-无效;
U	伺服准备好	1-有效
1	Switch ON	0-无效;
'	可以运行伺服	1-有效
2	Operation Enabled	0-无效;
	伺服已经使能	1-有效
3	Fault 故障	0-无效; 1-有效
4	Voltage Enabled	0-无效;
4	伺服可以使能	1-有效
5	Quick Stop	0-有效;
J	快速停机	1-无效
6	Switch On Disable	0-无效;
	不可以上电	1-有效
7	Warning	0-无效;
	警告	1-有效
9	Remote	0-无效;
	控制字是否生效	1-有效
10	Target Reach	0-无效;
10	目标到达	1-有效 目标到达
12	Homing Attained	0-无效;
12	回零执行	1-有效 回零动作执行完成
12	Homing Error	0-无效;
13	回零错误	1-有效 回零异常
15	Home Find	0-无效;
15	原点已找到	1-有效 回零完成,零点已找到

4.5.2 关联的对象字典

表 4.22 HM 模式关联的所有对象字典

索引	子索引						
(Hex)	(Hex)	名称	数据类型	单位	SDO	PDO	默认值
603F	00	错误码	UINT16		RO	TPDO	0
6040	00	控制字	UINT16		RW	RPDO	0
6041	00	状态字	UINT16		RO	TPDO	0
6060	00	控制模式	INT8		RW	RPDO	0
6061	00	控制模式显示	INT8		RO	TPDO	0
6062	00	用户位置指令	DINT32	指令单位	RO	TPDO	
6063	00	电机位置反馈	INT32	编码器单位	RO	TPDO	
6064	00	用户位置反馈	INT32	指令单位	RO	TPDO	
606C	00	用户实际速度反馈	INT32	指令单位/秒	RO	TPDO	
6072	00	最大转矩	UINT16	0.10%	RW	RPDO	3000
6077	00	实际转矩	INT16	0.10%	RO	TPDO	0
607C	00	零点偏移量	INT32	指令单位	RW	RPDO	0
607F	00	最大转速限制	UINT32	指令单位/秒	RW	RPDO	838860800
6091	01	电机轴分辨率	UINT32		RW	RPDO	1
6091	02	负载轴分辨率	UINT32		RW	RPDO	1
60B0	00	位置偏置	INT32	指令单位	RW	RPDO	0
60B1	00	速度偏置	INT32	指令单位/秒	RW	RPDO	0
60B2	00	转矩偏置	INT32	0.10%	RW	RPDO	0
6098	00	回零方法	INT8		RO	TPDO	0
6000	01	高速搜索减速点	UINT32	指令单位/秒	RW	RPDO	13981013
6099	02	低速搜索零点	UINT32	指令单位/秒	RW	RPDO	1398101
609A	00	寻零加速度	UINT32	指令单位/秒 ^2	RW	RPDO	1096111445

4.5.3 回零操作步骤

表 4.23 HM 模式操作步骤

功能	对象字典	PDO/SDO 属性	说明			
	0x6060	RPDO/SDO写	主站设置模式 6			
	0x6061	TPDO/SDO 读	从站反馈,主站判断是否为 6			
拉出名米心里	0x6098	RPDO/SDO 写	设置回零方式 (1-35)			
控制参数设置	0x6099-01	RPDO/SDO写	回零点时速度-高速			
	0x6099-02	RPDO/SDO 写	回零点的速度-低速			
	0x609A	RPDO/SDO 写	回零点时候的加速度			
驱动器状态获取	0x6040	RPDO	依次设置 6->7->15->31 开始回零动作; 故障复位: 下发 128			
和控制	0x6041	TPDO	驱动器使能过程中以及使能后, 一直读取驱动			
	0x603F	TPDO	器状态,一旦状态不对,就会断开使能。			

功能	对象字典	PDO/SDO 属性	说明
			主站读取驱动器回零标志位;
	0X6041.Bit15	TPDO	0-回零未完成,请等待;
回零成功			1-回零完成。
	0X6064	TPDO	回零完成后,读取驱动器当前位置

4.5.4 PDO 配置建议

以下配置只是建议配置,实际使用可根据需要修改。

PDO 属性 对象字典 备注 0x6040 控制字 必须 **RPDO** 0x6098 回零方式 必须 0x6060 控制模式 必须 0x6041 状态字 必须 **TPDO** 0x6064 实际位置 必须 0x6061 控制模式显示 必须

表 4.24 HM 模式建议的配置

4.5.5 回零模式介绍

CiA402 中定义了 35 种回零方式,每种回零都需要使用外部 DI 信号,驱动器默认参数已经分配了 3 个 DI 用于回零。DI 输入信号参考下表描述。

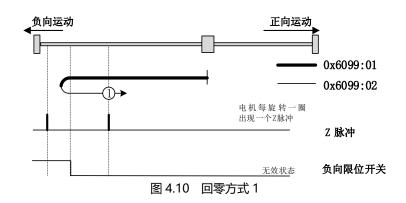
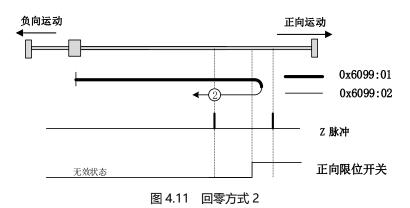

	及 T.23 业约品	(M) (1) A HOH	うしておうくしつ
DI 输 入口	默认分配功能	CN3 口 引脚号	信号有效值
GDI2	正向限位开关	Pin5	0-无效 0->1 上升沿 1-有效
GDI3	负向限位开关	Pin8	0-无效 0->1 上升沿 1-有效
GDI4	原点开关	Pin27	0-无效 0->1 上升沿 1-有效

表 4.25 驱动器默认分配的 DI 输入信号

1) 回零模式 1, 0x6098=1

需要的 DI 信号:负向限位开关和电机编码器 Z 信号。

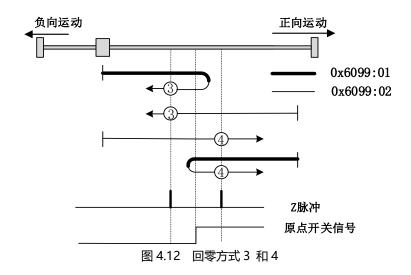

如下图示意,启动时刻,负向限位开关信号无效,负向高速 (0x6099-01) 开始运动,遇到负向限位开关上升沿,立刻减速反向,正向低速 (0x6099-02) 运动,遇到第一个 Z 信号停止。

2) 回零模式 2, 0x6098=2

需要的 DI 信号: 正向限位开关和电机编码器 Z 信号。

如下图示意,启动时刻,正向限位开关信号无效,正向高速 (0x6099-01) 开始运动,遇到正向限位开关上升沿,立刻减速反向,负向低速 (0x6099-02) 运动,遇到第一个 Z 信号停止。

3) 回零模式 3 或 4, 0x6098=3 或 4

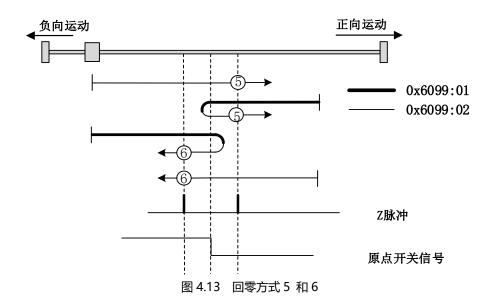

需要的 DI 信号:原点开关和电机编码器 Z 信号。

回零模式 3:

- ▶ 启动时刻,原点开关信号无效,正向高速(0x6099-01)开始运动,遇到原点开关上升沿,立刻减速反向,负向低速(0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向低速 (0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。

回零模式 4:

- ▶ 启动时刻,原点开关信号无效 (等于 0),正向低速 (0x6099-02)运动,遇到原点开关上升沿后继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向高速 (0x6099-01) 开始运动,遇到原点开关下降沿,立刻减速,正向低速 (0x6099-02) 运动,遇到原点开关上升沿,继续运行,遇到第一个 Z信号停止。


4) 回零模式5或6,0x6098=5或6

回零模式 5:

- ▶ 启动时刻,原点开关信号有效 (等于 1),正向低速 (0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到原点开关上升沿立刻减速,反向低速 (0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。

回零模式 6:

- ▶ 启动时刻,原点开关信号有效 (等于 1),正向高速 (0x6099-01)运动,遇到原点开关下降沿立刻减速,负向低速 (0x6099-02)运动,遇到原点开关上升沿继续运行,遇到第一个 Z 信号停止。
- ► 启动时刻,原点开关信号无效 (等于 0),负向低速 (0x6099-02) 运动,遇到原点开关激活上升 沿后继续运行,碰到第一个 Z 信号停止。

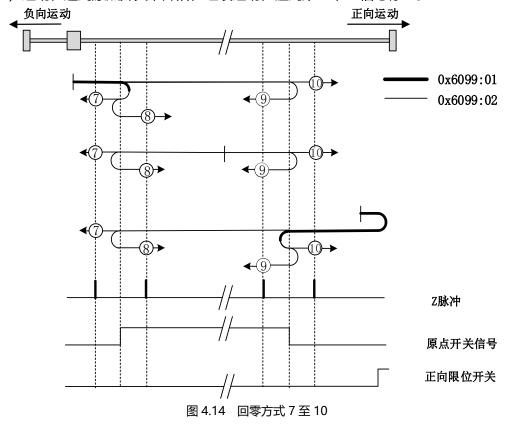
5) 回零模式 7至 10, 0x6098=7至 10

回零模式 7:

- ➤ 启动时刻,原点开关信号无效(等于 0),正向高速(0x6099-01)运动,遇到原点开关上升沿立刻减速反向,负向低速(0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),反向低速 (0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01)运动,遇到正向限位开关后立刻减速反向,负向高速 0x6099-01)运动,遇到原点开关上升沿,负向低速 0x6099-02)运动,遇到原点开关下降沿后继续运行,碰到第一个 Z 信号停止。

回零模式 8:

- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速反向,负向低速 (0x6099-02)运动,遇到原点开关下降沿立刻减速反向,正向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ➤ 启动时刻,原点开关信号有效(等于 1),负向低速(0x6099-02)运动,遇到原点开关下降沿, 正向低速(0x6099-02)运动,遇到原点开关上升沿,继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01)运动,遇到正向限位开关后立刻减速反向,负向高速 0x6099-01)运动,遇到原点开关上升沿,负向低速 0x6099-02)运动,遇到原点开关下降沿,立即正向低速 (0x6099-02)运行,遇到原点开关上升沿,继续运行,碰到第一个 Z 信号停止。


回零模式 9:

- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速(0x6099-02)运动,遇到原点开关下降沿,立刻减速反向,负向低速(0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),正向低速 (0x6099-02)运动,遇到原点开关下降沿, 反向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运行,碰到第一个 Z 信号停止。
- ➤ 启动时刻,原点开关信号无效(等于 0),正向高速(0x6099-01)运动,遇到原点开关上升沿,立刻正向低速 0x6099-02)运动,遇到原点开关下降沿,负向低速(0x6099-02)运行,遇到原点开关上升沿,继续运行,碰到第一个 Z 信号停止。

回零模式 10:

- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),正向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),正向高速 (0x6099-01) 运动,遇到正向限位开关,立

刻减速反向, 负向高速 0x6099-01) 运动, 遇到原点开关上升沿, 立刻减速, 正向低速 (0x6099-02) 运动, 遇到原点开关下降沿, 继续运动, 碰到第一个 Z 信号停止。

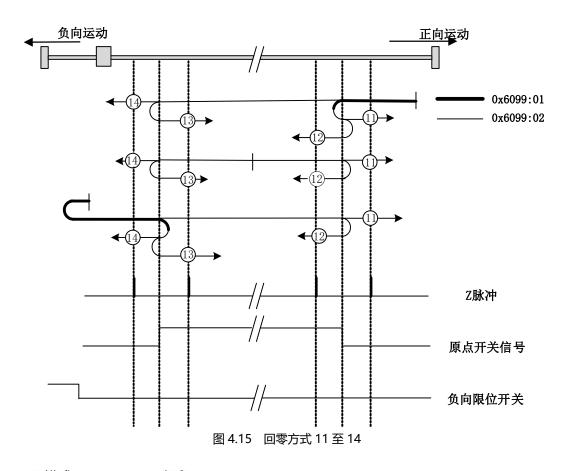
6) 回零模式 11 至 14, 0x6098=11 至 14

回零模式 11:

- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),正向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运行,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到负向限位开关,立刻减速反向,正向高速 0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运动,碰到第一个 Z 信号停止。

回零模式 12:

- 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速 (0x6099-02)运动,遇到原点开关下降沿,负向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),正向低速 (0x6099-02)运动,遇到原点开关下降沿, 负向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到负向限位开关,立


刻减速反向,正向高速 0x6099-01)运动,遇到原点开关上升沿,立刻减速,正向低速 (0x6099-02)运动,遇到原点开关下降沿,负向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。

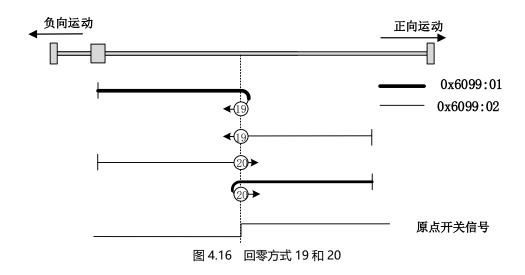
回零模式 13:

- 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,负向低速 (0x6099-02)运动,遇到原点开关下降沿,正向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向低速 (0x6099-02)运动,遇到原点开关下降沿, 正向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到负向限位开关,立刻减速反向,正向高速 0x6099-01)运动,遇到原点开关上升沿,立刻减速,负向低速 (0x6099-02)运动,遇到原点开关下降沿,正向低速 (0x6099-02)运动,遇到原点开关上升沿,继续运动,碰到第一个 Z 信号停止。

回零模式 14:

- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到原点开关上升沿,立刻减速,负向低速 (0x6099-02)运动,遇到原点开关下降沿,负向低速 (0x6099-02)运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运动,碰到第一个 Z 信号停止。
- ▶ 启动时刻,原点开关信号无效 (等于 0),负向高速 (0x6099-01)运动,遇到负向限位开关,立刻减速反向,正向高速 0x6099-01)运动,遇到原点开关上升沿,立刻减速,负向低速 (0x6099-02)运动,遇到原点开关下降沿,继续运动,碰到第一个 Z 信号停止。

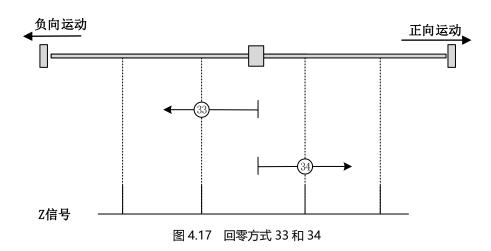
7) 回零模式 15/16/31/32 保留


8) 回零模式 17至 30

回零模式 17 至 30 与 1 至 14 对应相似,仅仅是 17 至 30 的回零动作中没有寻找 Z 信号的动作。举例:回零模式 19 和 20 对比回零模式 3 和 4,仅仅是模式 19 和 20 省去了寻找 Z 信号动作。回零模式 19:

- ▶ 启动时刻,原点开关信号无效,正向高速(0x6099-01)开始运动,遇到正向限位开关上升沿,立刻减速反向,负向低速(0x6099-02)运动,遇到原点开关下降沿停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向低速 (0x6099-02) 运动,遇到原点开关下降沿停止。

9) 回零模式 20:


- ▶ 启动时刻,原点开关信号无效 (等于 0),正向低速 (0x6099-02)运动,遇到原点开关上升沿停止。
- ▶ 启动时刻,原点开关信号有效 (等于 1),负向高速 (0x6099-01) 开始运动,遇到原点开关下降沿,立刻减速,正向低速 (0x6099-02) 运动,遇到原点开关上升沿停止。

10) 回零模式 33 和 34

没有原点开关,也没有限位开关,直接在当前位置基础上转动,寻找到最近的 Z 信号就是零点。

- ▶ 回零模式 33: 负向低速 (0x6099-02) 运动,遇到第一个 Z信号停止。
- ▶ 回零模式 34: 正向低速 (0x6099-02) 运动,遇到第一个 Z信号停止。

11) 回零模式 35

不需要外接 DI,直接设置当前位置为零点位置。此种方式回零点,电机不会转动,当前实际位置 0x6064 等于编码器当前数值+0x607C。

5 对象字典详解

表 5.1 系列伺服参数一览表

· · · · · · · · · · · · · · · · · · ·	
参数组类别 Hex	详细
1000 ~1FFF	通讯子协议,参考 10.1 节描述
3000 ~ 3FFF	厂家自定义对象
6000 ~ 6FFF	CiA402 标准对象

5.1 厂家自定义对象 (3000h ~ 3FFFh)

5.1.1 基本参数

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0005/ 3000h-1	通讯写 EEPROM 使能	0~ 99	1	3	随时设置	立即生效

设置 CANopen 以 SDO 方式修改参数是否保存 EEPROM 。

0: 不保存;

1: 只保存 0x3000 组参数;

2: 只保存 0x6000 组参数;

3: 3000h 和 6000h 组参数都保存

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0006/ 3000h-2	禁止面板显示警告消息	0~ 1	1	3	随时设置	立即生效

用于设置警告消息是否在面板显示, 0-立即显示警告消息; 1-不显示警告消息。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0007/	150 知松华大月二	0.00	1	F0	が日ナン八字	÷m/+ <i>ih</i>
3000h-3	LED 初始状态显示	0~99		50	随时设置	立即生效

通过设置参数 P00.07 中的数值等于 P09 组的子索引,实现数码管始终显示某个变量数值。详细操作可参考 4.6 节。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P000B/ 3000h-4	运转方向选择	0~1	1	0	停机设定	再次上电生效

设置电机轴旋转方向:

0: 以 CCW 方向为正转方向 (A 超前 B);

1: 以 CW 方向为正转方向 (反转模式, A 滞后 B)。

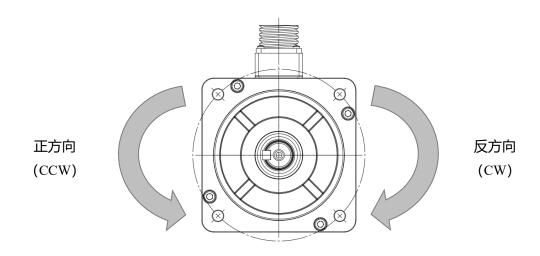


图 5.1 电机旋转方向的设置

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P000C/ 3000h-5	绝对位置类型	0~1	1	0	停机设定	再次上电生效

设置位置模式的绝对位置类型:

0:使用单圈绝对式,断电后不能记忆绝对位置,需要重新查找原点;

1: 使用多圈绝对式, 断电后位置能够保持, 有多圈溢出报警(请设置正确的电机编码器类型);

注: 在多圈绝对式电机与驱动器第一次连接上电时会发生 ErF1.2 Er73.0 Er73.1 属于正常现象。请根据故障处理方法解除报警。

索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0012/ 3000h-6	永冲输出逻辑反转	0~1	1	0	停机设定	再次上电生效

设置输出脉冲口的脉冲相位关系:

0: 以 CCW 为正转方向, A 超前 B;

1: 以 CW 方向为正转方向(反转模式, A 滞后 B)

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0013/ 3000h-7	Z 脉冲输出极性 选择	0~1	1	1	停机设定	再次上电生效

设置脉冲输出口 Z 脉冲的输出电平: (注: RS2E 不支持脉冲输出此参数无效)

0: 正极性输出 (Z脉冲为高电平);

1: 负极性输出 (Z脉冲为低电平)。

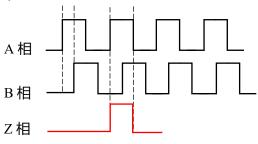


图 5.2 脉冲输出口特性设置

关于参数 P0012 和 P0013 的详细可以参考图 5.2, A 超前 B 相位 90°, Z 脉冲输出为高电平。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0016/	4中171582人はおらいも米が	0~2147483647	1Dulco/Dov	2500	/古扣 :八二	市场上中生物
3000h-8	编码器分频脉冲数	0~2147403047	1Pulse/Rev	2500	停机设定	再次上电生效

设置脉冲输出口在电机旋转 1 圈时,脉冲输出口输出的脉冲个数。(RS2E 此参数无效)

例如:参数 P0011 等于 0 时,参数 P0016 设置为 2500,那么实际脉冲口输出的脉冲数为 10000,如果 参数 P0011 设置为其他数值,那么 P0016 则无效。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P001C/ 3000h-9	超程停机方式	0~4	1	1	停机设定	立即生效

伺服超程防止功能动作时的电机停止方法通过 P001C 进行选择。

表 5.2 超程停机方式

	次 5.2 风柱	1/		
次 二 店	说	明		
设定值	伺服电机停止方法	伺服电机停止后的状态		
0	自由运行	保持 DB 制动		
1	零速停机	保持 DB 制动		
2	零速停机	位置锁定		
2	以 0x6084 (Homing 模式使用 609A)	保持 DB 制动		
3 斜坡停机				
以 0x6084 (Homing 模式使用 609A)		位置锁定		
4	斜坡停机	<u> </u>		

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P001D/ 3000h-10	第 1 类故障报警停机 方式	0~3	1	0	停机设定	立即生效

伺服发生第 1 类故障报警时的电机停止方法通过 P001D 进行选择。

表 5.3	笋 1 米	停机方:	#
7X J.J	70 I X	ニパテツハレノ ノ・	ᄊ

次	说明			
设定值	伺服电机停止方法	伺服电机停止后的状态		
0	自由运行	<u> </u>		
1	ニキナナルニキ (DR)	自由运行		
2	动态制动 (DB)	动态制动 (DB)		

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P001F/ 3000h-11	停机切换速度阈值	10 ~ 10000	r/min	100	停机设定	立即生效

伺服在停车过程中,减速和停机的阈值。大于 100r/min 认为在减速,小于 100r/min 则认为电机停止。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0020/ 3000h-12	急停转矩	0 ~ 6000	0.1%	1000	停机设定	立即生效

在急停状态时,电机输出转矩,出厂值 1000 表示电机额定转矩 1 倍 (1000*0.1%=1)。 需要设置一个 DI 的参数为 "2-EMG-S 急停输入", DI 激活的时候,电机处于紧急停机过程。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0022/ 3000h-13	抱闸打开-指令接收延 迟时间	0 ~ 500	ms	100	随时设定	立即生效

请在抱闸打开并等待指令接收延迟时间 (P0022) 所设置的时间后,再输出上位装置对伺服单元的指令。请参考 3.7.4 抱闸设定。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0023/	停止时抱闸动作-伺服	1 ~ 1000	ms	100	随时设定	立即生效
3000h-14	OFF 延迟时间					

伺服电机停止时,如果伺服 ON 输入 (S-ON)信号 OFF,则 BRK 信号将同时 OFF。通过设定伺服 OFF 延迟时间 (P0023),可变更 BRK 信号 OFF 至实际电机不通电的时间。

请参考 3.7.4 抱闸设定 。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0024/	运行时抱闸动作-伺服 OFF	1 ~ 1000	ms	300	随时设定	立即生效
3000h-15	延迟时间				,,_,,,,,,,,	

伺服电机运行时,如果伺服 ON 输入 (S-ON) 信号 OFF,则 BRK 信号将在电机速度小于抱闸动作输

出速度值 (P0025) 后 OFF。通过设定伺服 OFF 延迟时间 (P0024),可变更 BRK 信号 OFF 至实际 电机不通电的时间。请参考 3.7.4 抱闸设定。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0025 3000h-16	抱闸动作速度值	0 ~ 3000	r/min	20	随时设定	立即生效

电机在运转过程中,在处理抱闸逻辑时,速度小于该值的时候认为电机静止。

请参考 3.7.4 抱闸设定 。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0029/ 3000h-17	再生制动方式	0 ~ 3	1	0	停机设定	立即生效

伺服电机在减速刹车过程中,能量会从负载端传递到直流母线,如果回馈的能量过大,此时需要制动电阻 释放该部分能量,否则驱动器有可能报警或者损坏。

表 5.4 再生制动方式说明

设定值	再生制动方式	说明	
0	使用内置电阻	根据内置电阻功率和阻值进行再生制动电阻过载保护动作。	
1	使用外置电阻	根据外置电阻功率和阻值进行再生制动电阻过载保护动作。	
2	预留		
3	无	不使用再生制动电阻,通过内置电容处理全部的再生电力。	

不同功率下制动方式不同,请参照驱动器具体规格设置该参数。 内部制动电阻和外部制动电阻不可同时使用,请注意硬件接线的正确

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P002A/ 3000h-18	再生电阻散热系数	10 ~ 100	1	50	停机设定	立即生效

根据外置再生电阻的散热状态调整再生电阻散热系数大小。如果使用内置再生电阻请设为出厂值。

表 5.5 再生电阻散热系数说明

再生电阻散热速度	再生电阻散热系数		
快	大		
1	1		
慢	小		

自冷方式(自然对流冷却)时:建议设定为30%以下。

强制风冷方式时:建议设定为50%以下。

请根据实际散热状态设置再生电阻散热系数以免由于设置不当造成再生放电电阻异常发热,导致烧损。使用外置再生放电电阻时,请务必设置温度熔断器等外部保护。

再生放电电阻有可能出现异常发热,导致烧损,这与再生放电电阻过载保护的有效/无效无关。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P002C/	内置再生电阻阻值	1 ~ 1000	Ω	50	仅显示	立即生效
3000h-19	. 3 3 0				17 (

保持默认数值即可,不可修改。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P002D/ 3000h-20	内置再生电阻容量	1 ~ 65535	W	50	仅显示	立即生效

保持默认数值即可,不可修改。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P002E/ 3000h-21	外置再生电阻阻值	1 ~ 1000	Ω	50	停机设定	立即生效

请根据制动电阻铭牌设置该数值。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P002F/ 3000h-22	外置再生电阻容量	1 ~ 65535	W	40	停机设定	立即生效

请根据制动电阻铭牌设置该数值。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0030 3000h-23	单/三相选择	0 ~ 1	1	0	随时设定	立即生效

根据驱动器的铭牌设置。

0: 单相输入

1: 三相输入

5.1.2 I/O 端子配置

RS2C 伺服驱动器硬件配置含有 7 路数字量输入接口(DI)与 5 路数字量输出接口(DO)。 各路接口的功能与逻辑有效电平可以通过相关参数设定,请参考下面说明。

1) DI 功能选择

参数号/	名称	数值范围	单位	出厂值	设置方式	生效方式
索引号	口 你	数阻范围	平位	ш/ іц	以旦刀八	土双刀式
P0107/	GDI-1 功能分配		1	2	随时设定	再次上电生效
3001h-1	ひかり 切能力能		•	۷	旭的坟廷	有 从工电主XX
P0109/	GDI-2 功能分配			4	随时设定	再次上电生效
3001h-3	ひローと 功能力能			4	旭的坟廷	有 从工电主XX
P010B	GDI-3 功能分配			5	随时设定	五次 1-中开始
3001h-5	GDI-3 刃形万間			ס	随的 坟丛	再次上电生效
P010D	GDI-4 功能分配	0-40		36	随时设定	再次上电生效
3001h-7	GDI-4 功能力能	(详细请参考下表)		30	随的 坟丛	丹 从上电主双
P010F	GDI-5 功能分配			0	随时设定	再次上电生效
3001h-9	はいら が形力的			U	随时 坟廷	丹从上电土双
P0111				0	応しい	五次 1-中土沙
3001h-11	GDI-6 功能分配				随时设定	再次上电生效
P0115/				39	ルキロナンハニュ	· · · · · · · · · · · · · · · · · · ·
3001h-13	GDI-7 功能分配			39	随时设定	立即生效

参数值设定与功能选择参考下表:

表 5.6 DI 可分配功能码

输入信号	输入信号名称	DI 设定值
-	无定义	0
EMG-S	急停输入	2
ALM-RST	复位报警输入	3
P-OT	正向限位开关	4
N-OT	负向限位开关	5
P-CON	比例动作切换输入	16
HomeSwitch	原点信号	36

1) DI 输入端子有效逻辑电平设置

表 5.7 DI 逻辑电平设置

参数号/	名称	数值范围	单位	出厂值	设置方式	生效方式
索引号	יפום		+12	шиш	以 直/3.20	±xx/3±0
P0108/	 GDI-1 逻辑电平			0	随时设定	立即生效
3001h-2	GDI-1 逻辑电干			U	阳山及足	五的王双
P010A/	CDL2海根中亚			0	かちローンス・デュ	÷
3001h-4	GDI-2 逻辑电平 			0	随时设定	立即生效
P010C	CDL2 泗起中亚	_		0	かちローンス・デュ	÷
3001h-6	GDI-3 逻辑电平			0	随时设定	立即生效
P010E/	GDI-4 逻辑电平	0: 低电平有效	1	0	吃品之	立即 开始
3001h-8	GDI-4 皮料电平	1: 高电平有效	'	U	随时设定	立即生效
P0110				0	かちローンス・デュ	÷
3001h-10	GDI-5 逻辑电平			0	随时设定	立即生效
P0112				0	かちローンス・デュ	÷
3001h-12	GDI-6 逻辑电平			0	随时设定	立即生效
P0115/				0	かたロートンス・ナー	->
3001h-14	GDI-7 功能分配			0	随时设定	立即生效

3) DO 输出端子功能选择

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0127/ 3001h-15	DO 端子信号源选择	0 ~ 31	1	0	停机设定	立即生效

设置 DO1-DO5 端子的逻辑输出由驱动器控制还是由通讯设定。

P0127 默认是 10 进制显示,转化为 2 进制以后某一位为 1,则表示该位的逻辑由通讯设置。例如 P0127 = 8 (十进制) = 1000 (二进制),那么 DO4 (bit3)则由 CANopen 总线控制,其余 DO 由伺服驱动器控制。

表 5.8 DO 默认功能码分配

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0128/	DO-1 功能分配		1	1	随时设定	立即生效
3001h-16				•		32 W 22 XX
P012A/	DO-2 功能分配		1	2	随时设定	立即生效
3001h-18	DO-2 功能力的		Į	۷	随时以及	立 以 工 以 工 以
P012C/	DO-3 功能分配	0~13	1	3	随时设定	立即生效
3001h-20	20-3 机能力配	(详细请参考表 5.9)	ı	,	旭山及足	立的王双
P012E/			1	4	でちロナンス・デュ	÷ED# ##
3001h-22	DO-4 功能分配		ı	4	随时设定	立即生效
P0130/			1	4	のちロナンス・ウェ	÷ED# ##
3001h-24	DO-5 功能分配		I	4	随时设定	立即生效

为 DO 输出端子设置相关功能,可设置的更参考表 5.9。

表 5.9 DO 可分配功能

輸出信号	输出信 号 名称	DI 设定值
-	无定义	0
S-RDY	伺服准备输出	1
ALM	报警输出	2
BRK	外部制动器信号	3
COIN	位置到达输出	4
INP	定位接近信号	5
AT-SPEED	速度到达输出	6
V-COIN	速度一致输出	7
ZSP	零速箝位检测信号	8
TGON	电机旋转输出信号	9
V-LIMIT	转速限制中输出	10
T-ARR	转矩指令到达信号	11
TLC	转矩限制中信号输出	12
WARN	警告输出	13

2) DO 输出端子有效逻辑电平设置

表 5.10 DO 逻辑电平设置

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0129/ 3001h-17	DO-1 逻辑电平		1	0	随时设定	立即生效
P012B/ 3001h-19	DO-2 逻辑电平	0:逻辑有效时,	1	0	随时设定	立即生效
P012D/ 3001h-21	DO-3 逻辑电平	输出光耦导通; 1:逻辑有效时,	1	0	随时设定	立即生效
P012F/ 3001h-23	DO-4 逻辑电平	输出光耦关断.	1	0	随时设定	立即生效
P0130/ 3001h-25	DO-5 逻辑电平		1	0	随时设定	立即生效

5.1.3 增益调整

参数号/	なわ	数值范围	单位	出厂值	:八 里七十	生效方式
索引号	名称	致阻池围	中位	山/旭	设置方式	主双万式

P0201/	油乾井子,74.4.4.	0 4	1	0	かちローンス・ウェ	立即生效
3002h-1	调整模式选择	0 ~ 4	ı	U	随时设定	立即主效

设置增益调整的方式:

0: 手动调节增益参数, P0202(刚性等级选择)无效;

1:标准模式:由 P0202 自动调节第一组增益参数;

2: 定位模式: 由 P0202 自动调节第一和第二组增益参数, 且自动增益切换功能打开;

3-4: 预留

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0202/	网络安尔沙生女	0 ~ 31	1	12	で カートング・ニュー	÷m/+상
3002h-2	刚性等级选择	0 ~ 31	ı	12	随时设定	立即生效

用于设置伺服的刚性,数值越大,伺服刚性越高,动态特性越好,刚性等级选择完毕之后,伺服驱动器会自动更新增益参数 (由参数 P0201 的决定如何更新)。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0203/ 3002h-3	第 1 位置环增益	0 ~ 20000	0.1/s	400	随时设定	立即生效

该参数用于设置位置环的比例环节,如果参数 P0201 设置为 1 或 2,在参数 P0202 设置完刚性等级之后,会自动更新此参数;

如果参数 P0201 设置为 0, 那么需要手动调整该参数, 具体调节原则可以参考 7.3 节的手动增益调整部分。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0204/ 3002h-4	第 1 速度环增益	1 ~ 20000	0.1Hz	250	随时设定	立即生效

该参数用于设置速度环的比例环节,如果参数 P0201 设置为 1 或 2,在参数 P0202 设置完刚性等级之后,会自动更新此参数;

如果参数 P0201 设置为 0, 那么需要手动调整该参数, 具体调节原则可以参考 7.3 节的手动增益调整部分。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0205/ 3002h-5	第 1 速度环积分时间常 数	10 ~ 50000	0.01ms	3200	随时设定	立即生效

该参数用于设置速度环的积分环节,如果参数 P0201 设置为 1 或 2,在参数 P0202 设置完刚性等级之后,会自动更新此参数;

如果参数 P0201 设置为 0, 那么需要手动调整该参数, 具体调节原则可以参考 7.3 节的手动增益调整部分。

该值设置的越小,积分效果越强,可以使得稳态误差更快趋于0。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0206/ 3002h-6	第 1 转矩滤波时间常数	0 ~ 3000	0.01ms	80	随时设定	立即生效

该参数用于对内部转矩指令低通滤波,如果参数 P0201 设置为 1 或 2,在参数 P0202 设置完刚性等级之后,会自动更新此参数;

如果参数 P0201 设置为 0,那么需要手动调整该参数。转矩指令经过滤波处理后会更佳平滑,可显著降低噪音或震动。该数值设置越大,滤波效果越显著,处理后的曲线越平滑,但是会影响系统的响应特性。滤波效果请参考图 5.3。

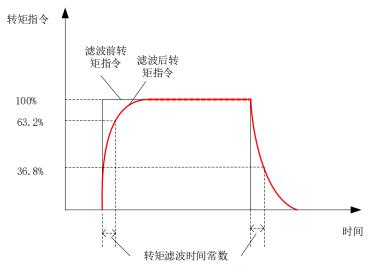


图 5.3 转矩指令滤波效果

参数号 P0203 至 P0206 为第 1 组增益的相关参数, 第 2 组增益的参数类型相似, 如果手动设置第 2 组增益参数的话, 调试方法原理也类似, 不再详细列出参考表 5.11, 但是第 2 组增益的数值默认的都会比第 1 组要大。

参数号	参数名称
P0203/3002h-3	第1位置环增益
P0204/3002h-4	第 1 速度环增益
P0205/3002h-5	第 1 速度环积分时间常数
P0206/3002h-6	第 1 转矩滤波时间常数

表 5.11 第 2 组增益的相关参数

参数号	参数名称
P0207/3002h-7	第2位置环增益
P0208/3002h-8	第2速度环增益
P0209/3002h-9	第2速度环积分时间常数
P020A/3002h-10	第2转矩滤波时间常数

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0210/ 3002h-11	增益切换方式选择	0 ~ 1	1	1	随时设定	立即生效

增益切换可设置的参数描述如下:

0: 固定在第1增益,但是速度环可以使用外部输入端子/P-CON实现比例或比例-积分控制(P/PI)的动作

切换。

1: 根据 P0211 的条件设置使用增益切换。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0211/ 3002h-12	增益切换条件选择	0 ~ 10	1	0	随时设定	立即生效

如果开启了增益切换功能,根据参数 P0211 来设置增益切换的条件。

0: 固定在第1增益;

1: 增益切换端子输入;

2: 转矩指令;

3: 速度指令;

4: 速度指令变化量;

5: 预留;

6: 位置偏差;

7: 有位置指令;

8: 定位结束信号;

9: 实际速度

10: 有位置指令+实际速度

增益如何切换请参考 7.4 节的增益切换功能的相关内容。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0212/	 切换延迟时间	0 ~ 10000	0.1ms	50	随时设定	立即生效
3002h-13	的关定区间间	0 1 10000	0.11113	30		77 KP XX
P0213/	 切换水平	0 ~ 20000	1	50	随时设定	立即生效
3002h-14	切换小干	0 ~ 20000	Į	30	随时以及	五郎王双
P0214/	↓∏+A;₩±T	0 ~ 20000	1	30	ルカロナンハニュ	÷m/+¾
3002h-15	切换滞环	0 ~ 20000	l	50	随时设定	立即生效

切换延迟时间:

从第1增益切换到第2增益时,在满足增益切换的条件后,立刻切换到第2增益;

从第2增益切换回第1增益时,在增益切换触发后延迟时间(P0212设定)后切换到第1增益。

切换水平与滞环:切换水平与滞环共同决定切换动作触发的判定条件。

注意: 在切换水平设定小于滞环时, 内部会重新设定切换水平等于滞环。

(关于增益切换具体动作请参考 7.4 增益切换功能)。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0215/	位置增益切换时间	0 ~ 10000	0.1mc	20	かちローング 二二	ᄼ ᄪᄼᄽ
3002h-16	1210000000000000000000000000000000000	0 ~ 10000	0.1ms	20	随时设定	立即生效

位置控制时, 当第1位置环增益与第2位置环增益相差较大时, 为减缓增益切换时位置环增益急剧变化而带来的转矩变动及振动, 可以通过设置该参数, 让第1位置增益以斜坡形式过渡到第2位置增益。

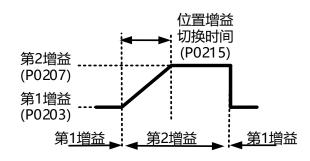


图 5.4 位置增益切换时间

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P021E/ 3002h-19	PDFF 增益	0 ~ 1000	0.1%	1000	随时设定	立即生效

用于设置速度环的控制方式。

出厂值为 1000, 表示速度环采用 PI 控制, 动态响应快;

如果设置为 0,则表示速度环采用 PDF 控制,动态响应变慢,无超调;

通过调节 P021E, 可使得速度环既具有较快的响应性, 又不会增大速度反馈超调。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P021F/ 3002h-20	速度前馈方式选择	0 ~ 2	1	0	停机设定	立即生效

位置控制模式的时候,选择合适的速度前馈,可以提高位置环响应特性,减小位置偏差,参考图 5.5。

0: 无速度前馈;

1: 内部速度前馈;

2: 将 60B1h 用作速度前馈;

图 5.5 前馈控制的效果

参数号/索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0220/ 3002h-21	速度前馈增益	0 ~ 1000	0.1%	0	随时设定	立即生效

位置控制模式下,将所选择的速度前馈信号乘以 P0220,得到速度前馈值,该值作为速度指令的一部分。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0221/ 3002h-22	速度前馈滤波时间常数	0 ~ 6400	0.01ms	0	随时设定	立即生效

设定速度前馈输入所需的滤波时间常数。

在速度前馈滤波时间常数为一定值的条件下,逐步提高速度前馈增益,从而使速度前馈功能有效。提高转速度前馈增益,可以实现恒加减速过程中位置误差接近零的效果。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0222/ 3002h-23	转矩前馈方式选择	0 ~ 2	1	0	随时设定	立即生效

采用转矩前馈控制,可以提高转矩指令的响应,提高控制精度。

0: 无转矩前馈;

1: 内部转矩前馈;

2: 将 60B2h 用作转矩前馈

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0223/ 3002h-24	转矩前馈增益	0 ~ 2000	0.1%	0	随时设定	立即生效

非转矩控制模式下,将所选择的转矩前馈信号乘以 P0223,得到转矩前馈值,该值作为转矩指令的一部分。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0224/ 3002h-25	转矩前馈滤波时间常数	0 ~ 6400	0.01ms	0	随时设定	立即生效

设定转矩前馈输入所需的滤波时间常数。

在转矩前馈滤波时间常数为一定值的条件下,逐步提高转矩前馈增益,从而使转矩前馈功能有效。提高转矩前馈增益,可以实现恒加减速过程中位置误差接近零的效果。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0230/ 3002h-26	负载惯量比	0 ~ 12000	1%	100	随时设定	立即生效

负载惯量比的计算公式如下,如果可以精确计算出实际负载的惯量,那么可以直接设置 P0230,如果无法精确计算负载惯量,请根据各系列伺服综合用户手册的说明合适设置合适的惯量比。如果电机光轴运行无任何负载,那么 P0230 = 0 ,如果机械负载惯量和电机的转动惯量相同的话,那么 P0230 = 100 。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0232/ 3002h-27	手动惯量辨识模式	0 ~ 1	1	1	停机设定	立即生效

如果无法获知负载惯量比,可以使用离线惯量辨识功能。离线辨识功能是指无需借助外部设备,通过伺服驱动器的操作面板控制电机旋转,从而实现惯量辨识的功能,详细操作过程参考各系列伺服综合用户手册相关内容。

1: JOG 点动模式,按住 "UP" 键电机始终正转,按住 "DOWN"键,电机始终反转。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0233/ 3002h-28	惯量辨识最大速度	100 ~ 1000	r/min	500	停机设定	立即生效

手动惯量辨识过程中电机的最大转速。请根据负载情况合理设置最大转速,该速度越大,辨识的结果越准确。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0234/ 3002h-29	惯量辨识加速时间	20 ~ 800	1ms	100	停机设定	立即生效

指电机转速从 0 r/min 加速到 P0233 最大转速的时间。

请注意电机转动圈数是否超过机械限位,确保人身安全与设备安全;使用 JOG 模式进行惯量辨识,需要注意是否超过机械限位。

5.1.4 振动抑制

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0301/	共振抑制方式选择	0 ~ 4	1	0	随时设定	立即生效
3003h-1	,	0 ~ 4	ı	U	随时以及	立即主双

设定陷波滤波器推定的共振频率数和推定后的动作。

表 5.12 共振抑制方式选择

设定值	内容	
0	自动滤波器: 无效	第3、第4陷波滤波器参数不变。
1	自动滤波器: 1 个有效	第3陷波滤波器参数根据共振检测结果进行更新。
2	自动滤波器: 2 个有效	第 3、第 4 陷波滤波器参数根据共振检测结果进行更新。
3	共振频率测试模式	仅检测共振频率,并显示
4	自动滤波器结果清除	第3、第4陷波滤波器恢复出厂值。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0302/ 3003h-2	谐振频率检出值	0 ~ 8000	Hz	0	仅显示	立即生效

检测机械共振频率, 当参数 P0301 = 3 时, 会更新该值。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0303/	第 1 陷波器频率	50 ~ 8000	Hz	8000	随时设定	立即生效
3003h-3						

设置第1陷波滤波器共振频率。本参数设定为"8000"时第1陷波滤波器功能无效。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0304/ 3003h-4	第 1 陷波器宽度	0 ~ 20	1	2	随时设定	立即生效

设置第1陷波滤波器的宽度。设定较大时,则陷波宽度也变大。一般情况下使用出厂值。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0305/ 3003h-5	第1陷波器深度	0 ~ 99	%	0	随时设定	立即生效

设置第1陷波器的陷波深度。设定值增大时陷波深度变浅,相位滞后变小。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P0306/ 3003h-6	第 2 陷波器频率	50 ~ 8000	Hz	8000	随时设定	立即生效			
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P0307/ 3003h-7	第 2 陷波器宽度	0 ~ 20	1	2	随时设定	立即生效			
		l	ı						
参数号/	名称	数值范围	单位	出厂值	设置方式	生效方式			
P0308/ 3003h-8	第 2 陷波器深度	0 ~ 99	%	0	随时设定	立即生效			
第2组陷波	器的设置参考第1组设置		I .	ı					
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P0309/ 3003h-9	第 3 陷波器频率	50 ~ 8000	Hz	8000	随时设定	立即生效			
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P030A/ 3003h-10	第 3 陷波器宽度	0 ~ 20	1	2	随时设定	立即生效			
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P030B/ 3003h-11	第 3 陷波器深度	0 ~ 99	%	0	随时设定	立即生效			
第3组陷波	器的设置参考第1组设置								
参数号/	名称	数值范围	单位	出厂值	设置方式	生效方式			
P030C/ 3003h-12	第 4 陷波器频率	50 ~ 8000	Hz	8000	随时设定	立即生效			
	•	•							
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式			
P030D/ 3003h-13	第 4 陷波器宽度	0 ~ 20	1	2	随时设定	立即生效			
-		•	•	•					

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P030E/ 3003h-14	第 4 陷波器深度	0 ~ 99	%	0	随时设定	立即生效

第4组陷波器的设置参考第1组设置。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0320/ 3003h-15	位置平滑滤波时间常数	0 ~ 65535	0.1ms	0	停机设定	立即生效

该参数用于对位置指令使用一阶低通滤波器处理,如果输入的位置指令为阶跃类型或者没有平滑处理,可以设置滤波时间,对位置指令进行平滑处理,参考图 5.6 ,但是如图中标识,如果滤波时间过长,会导致响应延迟。

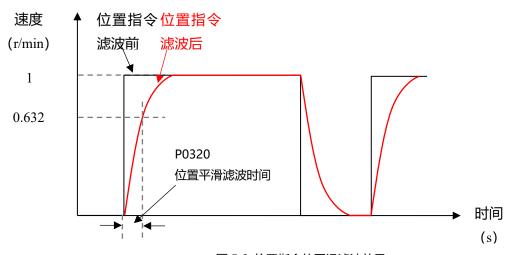


图 5.6 位置指令的平滑滤波效果

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0321/ 3003h-16	位置 FIR 滤波时间常数	0 ~ 1000	0.1ms	0	停机设定	立即生效

该参数同样用来对位置指令进行 FIR 滤波处理,并设置滤波时间常数。滤波效果参考图 8.7。

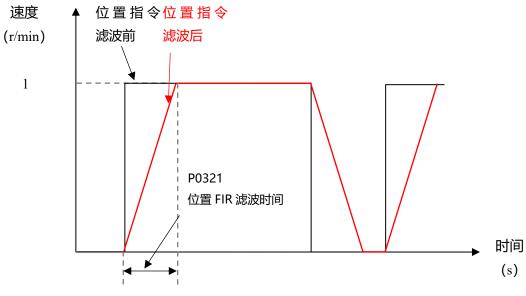


图 5.7 位置指令的 FIR 滤波效果

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P032A/ 3003h-19	低频振动频率	0 ~ 1000	0.1Hz	1000	随时设定	立即生效

设置低频振动的频率。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P032B/	减振陷波频率比	12 ~ 30	0.1	12	随时设定	立即生效
3003h-20	//X3/XPH//X///\——	12 % 30	0.1	12	が出り文化	五的王双

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P032C/ 3003h-21	减振陷波宽度等级	0 ~ 10	1	2	随时设定	立即生效

5.1.5 扩展控制

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0401/ 3004h-1	速度观测器选择	0 ~ 65535	1	0	随时设定	立即生效

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0402/ 3004h-2	速度观测器带宽	0 ~ 65535	Hz	8000	随时设定	立即生效

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0410/ 3004h-3	扰动观测器选择	0 ~ 1	1	0	停机设定	再次上电有效

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0411/ 3004h-4	扰动观测器增益	-1000 ~ 1000	0.1%	0	随时设定	立即生效

非转矩控制模式下,设置扰动转矩补偿的增益大小。

扰动转矩补偿可抑制外部扰动转矩对速度的影响,比如突加负载时,速度会发生跌落,P0411 数值越大,抗外部转矩扰动能力越强,也就是速度跌落会越小,但是设置过大可能会产生振动和噪音,需要与 P0412 配合使用。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0412/ 3004h-5	扰动观测器时间常数	0 ~ 2500	0.01ms	0	随时设定	立即生效

在非转矩控制模式下,设置扰动转矩补偿的滤波器时间常数。

对于参数 P0412 的扰动转矩补偿起到低通滤波的效果,也就是时间设置越大,扰动转矩补偿生效越慢。 一开始设定 P0412 为较大数值,确认 P0411 为较小数值亦产生一定效果;逐步将 P0412 设定值减小,设定值减小后,可显著提高抑制外部扰动转矩对速度的影响,但是可能会产生振动和噪音。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0420/	恒定负载补偿值	-1000 ~ 1000	0.1%	0	随时设定	立即生效
3004h-6			*****		1243 2/2	<u> </u>

用于恒定转矩的补偿:

0: 不补偿;

1:根据位置指令补偿;

2: 根据速度指令补偿;

3: 根据转矩指令补偿。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0421/ 3004h-7	正向摩擦补偿值	-1000 ~ 1000	0.1%	0	随时设定	立即生效

用于设置电机正转时的摩擦力补偿。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0422/	反向摩擦补偿值	-1000 ~ 1000	0.1%	0	随时设定	立即生效
3004h-8			2,0		1253	

用于设置电机反转时的摩擦力补偿。

5.1.6 速度模式参数

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P061C/	旋转检出设定	0 ~ 1000	r/min	20	随时设定	立即生效
3006h-4	》近十マ1平口 (文)上	0 ~ 1000	1/111111	20	MGH7 区化	五州王双

电机正在旋转, 且旋转速度大于 P061C, 则认为电机旋转 (DO 参数: 9-TGON 电机旋转输出信号)。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P061D/	(本座和)十八 <u>户</u>	10 10000	n /main	1000	でおりまされた	÷m##
3006h-5	速度到达设定	10 ~ 10000	r/min	1000	随时设定	立即生效

当电机转速绝对值大于 P061D 时,输出 DO 信号 (DO 参数: 6-AT-SPEED 速度到达输出)。

5.1.7 辅助功能

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0802/ 3008h-1	参数初始化	0 ~ 2	1	0	停机设定	立即生效

用于设置参数恢复出厂设置,或者故障记录的清除:

0: 无操作;

1:参数恢复出厂设置 (P90 和 P91 组参数除外);

2: 清除最近 10 次故障和警告代码。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0804/	绝对值编码器多圈数据复	0 ~ 3	1	0	停机设定	立即生效
3008h-3	位	0 ~ 3	ı	U	1学/11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	五的王双

设置 P0804 可以数据可实现如下功能:

0: 无操作;

1: 故障复位;

2: 多圈清零和故障复位。

注:复位多圈数据后,编码器的绝对位置发生改变,请注意机械原点位置。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0805/ 3008h-4	报警清除	0 ~ 1	1	0	停机设定	立即生效

报警复位操作:

0: 无操作;

1: 故障复位。

可通过报警复位操作的故障类型请查阅 9.2 节内容,请在伺服非运行状态执行该操作,避免伺服复位后的误动作。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0806/ 3008h-5	紧急停机	0 ~ 1	1	0	随时设定	立即生效

不管伺服处于任何模式,可以使用该功能执行紧急停机:

0: 无任何操作;

1: 紧急停机操作, 停机动作以及停机后的电机状态, 参考参数 P001B 的设置。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0807/ 3008h-6	速度 JOG 使能	0 ~ 65535	1	0	随时设定	立即生效

通过面板操作伺服点动运行,伺服驱动器需要在非使能状态、无报警方可进入速度点动模式,详细操作参考 4.8 节。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P080C/ 3008h-8	启动手动惯量辨识	0 ~ 65	1	0	随时设定	立即生效

通过面板操作手动惯量辨识的参数,需要在非使能状态,方可进行手动惯量辨识

5.1.8 运行状态指示

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0901/ 3009h-1	转矩指令	-32767 ~ 32767	0.1%	0	仅显示	立即生效

显示当前输入转矩, 1000 表示电机额定转矩。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0902/ 3009h-2	速度指令	-32767 ~ 32767	r/min	0	仅显示	立即生效

显示当前速度指令,精度为 1r/min。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0904/ 3009h-3	电机速度	-32767 ~ 32767	r/min	0	仅显示	立即生效

显示电机的实际转速。精度为 1r/min。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0906/	电机速度(0.1r/min)	-2147483647 ~	0.1r/min	0	仅显示	立即生效
3009h-4		2147483647				

显示电机的实际转速。精度为 0.1r/min。

中速度 -32767	7 ~32767 r/mii	in 0	仅显示	立即生效
	中速度 -3276	中速度 -32767 ~32767 r/m	中速度 -32767 ~32767 r/min 0	中速度 -32767 ~32767 r/min 0 仅显示

在每个位置控制周期内,位置指令对应的速度值。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P090A/ 3009h-6	目标位置	-2147483647 ~ 2147483647	1	0	仅显示	立即生效

表示对象字典 0x607A, 在位置控制模式下, 可直接读取上位机下发的位置指令个数 (未经过滤波、分频、倍频, 电子齿轮处理)。

参数号/	名称	数值范围	単位	出厂值	设置方式	生效方式
P090C/ 3009h-7	实际位置	-2147483647 ~ 2147483647	1	0	仅显示	立即生效

表示对象字典 0x6064, 在位置控制模式下, 编码器当前位置经过电子齿轮处理后的数据。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P090E/ 3009h-8	绝对位置计数器 (编码器单位)	-2147483647 ~ 2147483647	1	0	仅显示	立即生效

任何模式下, 编码器反馈的位置脉冲计数器。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0912/ 3009h-10	位置偏差计数器 (编码器单位)	-2147483647 ~ 2147483647	1	0	仅显示	立即生效

位置模式下,显示经过电子齿轮处理后的位置偏差数值。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0914/ 3009h-11	位置随动误差 (指令 单位)	-2147483647 ~ 2147483647	1	0	仅显示	立即生效

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0916/ 3009h-12	控制字	0 ~ 65535	1	0	仅显示	立即生效

表示对象字典 0x6040, 表示控制器下发的控制字, 详细说明可结合各控制模式。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0917/ 3009h-13	状态字	0 ~ 65535	1	0	仅显示	立即生效

表示对象字典 0x6041, 表伺服内部当前时刻状态字, 详细说明可结合各控制模式。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P091A/ 3009h-14	绝对值编码器单圈数 据	0 ~ 2147483647	1	0	仅显示	立即生效

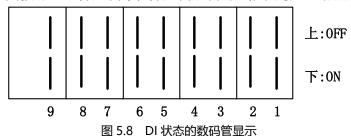
参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P091C/ 3009h-15	绝对值编码器多圈数 据	0 ~ 65535	1	0	仅显示	立即生效

以上两个数据用于显示编码器的绝对位置值。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P091D/ 3009h-16	电机电角度	0 ~ 65535	0.1°	0	仅显示	立即生效

显示电机转子当前电角度。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P091E/ 3009h-17	相电流有效值	0 ~ 65535	0.01A	0	仅显示	立即生效


参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0920/ 3009h-18	直流母线电压	0 ~ 65535	0.1V	0	仅显示	立即生效

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0922/ 3009h-19	控制电源电压	0 ~ 65535	0V	0	仅显示	立即生效

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0925/	DI 端子状态	0 ~ 65535	1	0	仅显示	立即生效

3009h-20			

将分配的 DI 信号显示在面板的 LED 数码管中,数码管从右到左依次对应驱动器的 DI(1).....DI(n)。

数码管上段亮灯,输入信号 OFF, (内部关断,高电平状态);

数码管下段亮灯,输入信号 ON, (内部导通,低电平状态)。

如果需要使用某个 DI 口作为控制信号: 1.应该先设置 DI 口的参数; 2. 根据实际的控制情况为 DI 选择合适的逻辑电平 (例如 DI 口不想接线的时候,可以设置逻辑电平为高电平)。 举例:

- 1.DI1 口不接线,控制伺服急停,需要设置的参数: P0107 = 2-EMG-S 急停, P0108 = 1-表示高电平有效,设置完毕伺服驱动器会立刻进入急停状态。
- 2.DI1 口需要接线,控制伺服急停,需要设置的参数: P0107 = 2-EMG-S 急停,, P0108 = 0-表示低电平有效,此时只要 DI1 只要按照章节 CANopen 总线控制 DI/DO 接线,即可实现伺服驱动器急停控制。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0926/ 3009h-21	DO 端子状态	0 ~ 65535	1	0	仅显示	立即生效

将 DO 分配的功能显示在面板的 LED 数码管中,数码管从右到左依次对应驱动器的 DO(1)......DO(n):

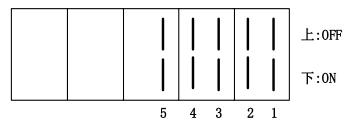


图 5.9 DO 状态的数码管显示

数码管上段亮灯,输出信号 OFF,(内部关断,高电平状态);数码管下段亮灯,输出信号 ON,(内部导通,低电平状态)。举例:

- 1) DO1 口的参数设置: P0128 = "1-R-RDY 伺服准备好", P0129 = 0-表示有效时输出 L 低电平。 当驱动器处于 Ready 状态时,DO1+与 DO1-两个引脚处于导通状态; 当驱动器处于 Error 状态时,DO1+与 DO1-两个引脚处于断开状态;
- 2) DO1 口的参数设置: P0128 = 1-R-RDY 伺服准备好", P0129 = 1-表示有效时输出 H 高电平。

当驱动器处于 Ready 状态时,DO1+与 DO1-两个引脚处于断开状态; 当驱动器处于 Error 状态时,DO1+与 DO1-两个引脚处于导通状态;

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0928/ 3009h-23	平均负载率	0 ~ 8000	0.1%	0	仅显示	立即生效

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P0929/ 3009h-24	伺服总通电时间	0 ~ 4294967295	0.1S	0	仅显示	立即生效

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P092B/ 3009h-25	伺服运行状态	0 ~ 65535	1	0	仅显示	立即生效

该数值用来监控伺服驱动器当前运行状态,具体数值与伺服状态对应关系如下:

表 5.13 驱动器当前状态显示

P092B 数值	伺服状态	解释
0	Not Ready	伺服不具备运行条件
1	Ready	伺服已经准备好, 可以进入使能
2	Run	伺服已经使能
3	Error	伺服有故障发生

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P0931/ 3009h-26	当前报警代码	0 ~ 65535	1	0	仅显示	立即生效

显示当前报警代码,例如读取的数据是 1874 (十进制) = 0x 752 (十六进制),表示 75.2 的错误。

5.1.9 通讯参数

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P8001/ 3080h-1	从机轴地址	1 ~ 255	1	1	随时设定	立即生效

使用 RS-485 通讯时,每台伺服驱动器仅能设定唯一地址,若地址重复将导致无法正常通讯,当地址设置为 0 时,作为广播地址,485 主站对所有从节点进行访问。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P8002/	通讯波特率	0 ~ 6	bns	Е	随时设定	立即生效
3080h-2	迪 凡 <i>i</i> 及特 华	0 ~ 6	bps	5	旭 別	五郎王汉

设置通讯速率,需要和上位机设置相同速率,否则无法通讯:

0-2400;

1-4800;

2-9600;

3-19200;

4-38400;

5-57600;

6-115200

注意: 单位 bps (bit/second), 1Kb= 1024b , 1 Mb= 1024 Kb 。

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P8003/ 3080h-3	奇偶校验方式	0 ~ 3	1	0	随时设定	立即生效

设置驱动器和上位机通讯时,数据校验方式,两者应保持相同校验方式,否则无法通讯:

0-无校验, 2个停止位

1-偶校验, 1个停止位

2-奇校验, 1个停止位

3-无校验, 1个停止位

参数号/ 索引号	名称	数值范围	单位	出厂值	设置方式	生效方式
P8004/	通讯错误类型	0 ~ 65535	1	0		立即生效
3080h-4		0 ~ 05555	ı	U	仅显示,只读	→ 立い ・ 立い ・ 立い ・ 立い ・ 立い ・ こい ・ こ ・ こい ・ こ ・ こ ・ こ ・ こ ・ こ ・ こ ・ こ ・ こ

当发生通讯故障时,伺服面板会显示故障码 (16 进制显示),相关故障码的解释参考下表:

表 5.14 Modbus 通讯错误故障码

错误编码	错误解析

0x0001	指令码错误
0x0002	数据地址错误
0x0003	数据错误
0x0004	伺服故障

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P8005/ 3080h-5	从机应答延时	0 ~ 5000	ms	1	随时设定	立即生效

伺服接收到上位机指令后,延时一段时间应答上位机。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P8006/ 3080h-6	32 位数据发送次序	0 ~ 1	1	1	随时设定	立即生效

针对 Modbus 通讯方式, 32 位数据的传送格式:

- 0- 高 16 位在前, 低 16 位在后;
- 1- 低 16 位在前, 高 16 位在后。

5.1.10 CANopen 通讯参数

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P8201/	CAN 通讯节点地址	1 ~ 125	1	1	停机设定	再次上电
3082h-1	LAN 通机口点地址	1 ~ 125	I	ı	1学们収止	丹次工电

设置 CANopen 从轴节点地址,CAN 网络中存在多个节点时,网络中不允许存在相同节点地址的从轴,且从轴节点地址禁止设置为 0 。

参数号/ 索引号	名称	数值范围	単位	出厂值	设置方式	生效方式
P8202/	CAN 通讯的波特率	0 ~ 5	1	Е	信扣扒完	五次 1-中
3082h-2	CAN 通讯的版符字	0 ~ 3	'	3	停机设定	再次上电

对于同一个 CAN 网络中的从节点,所有节点应该设置相同的波特率。详细定义参考下表。

表 5.15 CAN 通讯波特率

值	通讯速率			
0	100K Kbit/s			
1	125K Kbit/s			
2	250K Kbit/s			
3	800K Kbit/s			
4	1000K Kbit/s			
5	500K Kbit/s			

注: Kbit/s = kbps

5.1.11 电机参数

参数号	名称	数值范围	单位	出厂值	设置方式	生效方式
P9001	电机代号	0-65535	1	0	停机设定	立即生效

表 5.16 MC1 系列电机代码定义

电压等级	电机功率 (KW)	电机代码	电机功率 (KW)	电机代码
	0.1	10100	1.0	10140
200V	0.2	10110	1.5	10101
2000	0.4	10120	2.0	10111
	0.75	10130		
400V	1.0	10121	1.5	10131
4007	2.5	10141	3.0	10102

参数号	名称	数值范围	单位	出厂值	设置方式	生效方式
P9026	编码器类型	0-65535	1	0	停机设定	立即生效

编码器类型:

A0: 单圈绝对式 17 位编码器 11170 A1: 多圈绝对式 17 位编码器 11171 B0: 单圈绝对式 23 位编码器 11230 B1: 多圈绝对式 23 位编码器 11231 C0: 单圈绝对式 24 位编码器 19240 C1: 多圈绝对式 24 位编码器 19241

5.2 CiA402 参数详解(6000h ~ 6FFFh)

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)					属性	属性		
603F	0	错误码	UINT16	0 ~ 0xFFFF		ro	TPDO	All	

显示当前时刻最高级别故障码,与驱动器面板一致,详细故障解析可参考第6章。

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效模	默认值
(Hex)	(Hex)					属性	属性	式	
6040	0	控制字	UINT16	0~0xFFFF		rw	RPDO	All	

用于控制驱动器在 CANopen 模式下工作,主要功能有:驱动器使能,故障复位,各控制模式下运动指令设置。

表 5.17 控制字详解

Bit 位	名称	说明
0	Switch On	0-无效;
U	准备运行	1-有效
1	Enable Voltage	0-无效;
ı	接通动力电	1-有效
2	Quick Stop	0-快速停机;
2	快速停机	1-正常工作
3	Enable Operation	 1- 使能
3	伺服使能	1- 使能
4~ 6	与各模式相关	不同模式参考相关章节描述
7	Fault Reset	对于可复位的故障或警告, 执行复位
/	故障复位	操作,上升沿有效
0		0-无效;
8	Halt 暂停 	1-按照 0x605D 设置,进入暂停
9 ~15	预留	

索引	子索引	名称	数据类型	数值范围	单	SDO	PDO	生效模式	默认值
(Hex)	(Hex)				位	属性	属性		
6041	0	状态字	UINT16	0 ~ 0xFFFF		rw	TPDO	All	

用于反馈驱动器当前状态,以及各控制模式的特殊功能的状态指示。

表 5.18 状态字详解

Bit 位	名称	说明
0	Ready to Switch ON	0-无效;
0	伺服准备好	1-有效
1	Switch ON	0-无效;
'	可以运行伺服	1-有效
2	Operation Enabled	0-无效;
	伺服已经使能	1-有效
3	Fault 故障	0-无效; 1-有效
4	Voltage Enabled	0-无效;
4	伺服可以使能	1-有效
5	Quick Stop	0-有效;
3	快速停机	1-无效
6	Switch On Disable	0-无效;
0	可以使能伺服	1-有效
7	Warning	0-无效;
/	<u>敬</u> 生 言口	1-有效
9	Remote	0-无效;
3	控制字是否生效	1-有效
10	Target Reach	0-无效;
10	目标到达	1-有效 目标 (位置/速度/转矩) 到达

11	Internal limit active	0-无效;
11	内部软限位激活	1-有效 位置指令或反馈超限
12-13	各运行模式相关	不同模式参考相关章节描述
15	Home Find	0-无效;
15	原点已找到	1-有效 原点回零完成

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)					属性	属性		
605A	0	急 停 停 机方式	INT16	0 ~ 7		rw		All	2

驱动器在任何模式运行时,如果需要执行紧急停机操作,只需要将控制字的 0x6040-Bit2 置 0 (其他 Bit 位保持原数值不变),此时驱动器快速停机功能激活,通过 0x605A 设置的停机方式减速停机,直到电机速度为零,完成停机操作,详细参考下表。

0x605A	停机动作	
设定值	(所有控制模式都	3生效)
0	自由停机	停机后保持自由运行状态
1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	 停机后保持自由运行状态
2	以 0x 6085 斜坡停机	停机后保持自由运行状态
3	以 0x3000-32 紧急停止转矩停机	停机后保持自由运行状态
4	NA	NA
5	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持位置锁定状态
6	以 0x6085 斜坡停机	停机后保持位置锁定状态
7	以 0x3000-32 紧急停止转矩停机	停机后保持位置锁定状态

表 5.19 Quick Stop 停机动作定义

索引	子索引	名称	数据	数值	单位	SDO	PDO	生效	默认
(Hex)	(Hex)	一	类型	范围	₩1₩	属性	属性	模式	值
605C	0	伺服 OFF 停机方式	INT16	0 ~ 1	_	rw		All	0

驱动器在任何模式运行时,如果控制字的 0x6040-Bit3 置 0 (其他 Bit 位保持原数值不变),此时驱动器激活伺服 OFF 停机,通过 0x605C 设置的停机方式减速停机,直到电机速度为零,完成停机操作,停机过程以及停机后状态参考下表。

0x605C	停机动作	Ę				
设定值	(所有控制模式都生效)					
-3	零速停机	停机后保持 DB 制动状态				
-2	DB 停机	停机后保持 DB 制动状态				
-1	以 0x6084 (Homing 模式使用 609A) 斜坡停机	停机后保持 DB 制动状态				
0	以 0x3000-32 紧急停止转矩停机	停机后保持自由状态				

表 5.20 伺服 OFF 停机动作定义

1	以 0x6084 (Homing 模式使用	 停机后保持自由状态
	609A) 斜坡停机	157711元135日由1人心

索引	子索引	<i>/</i> 2∓/π	*************************************	数值	单位	SDO	PDO	生效	默认
(Hex)	(Hex)	名称	数据类型	范围	甲四	属性	属性	模式	值
605D	0	暂停停机方式	INT16	1 ~ 3	_	rw		All	1

驱动器在任何模式运行时,如果控制字的 0x6040-Bit8 置 1 (其他 Bit 位保持原数值不变),此时驱动器激活暂停功能,通过 0x605D 设置的停机方式减速停机,直到电机速度为零,完成停机操作,停机过程以及停机后状态参考下表。

 0x605D
 停机动作

 设定值
 (所有控制模式都生效)

 1
 以 0x6084 (Homing 模式使用 609A) 斜坡停机
 停机后保持位置锁定状态

 2
 以 0x6085 斜坡停机
 停机后保持位置锁定状态

 3
 以 0x3000-32 紧急停止转矩停机
 停机后保持位置锁定状态

表 5.21 暂停停机动作定义

索引	子索引	名称	数据类型	数值	单位	SDO	PDO	生效	默认
(Hex)	(Hex)	1011/101		范围	- 1	属性	属性	模式	值
605E	0	伺服警告停机方式	INT16	0 ~ 3		rw		All	2

驱动器在任何模式运行时,如果发生可复位故障或者警告(参考9.1节故障一览表中是否可复位列), 此时驱动器立刻减速停机,通过0x605E设置的停机方式减速停机,直到电机速度为零,完成停机操作, 停机过程以及停机后状态参考表5.20。

如果需要复位故障,待电机停止转动后,并排除故障原因,确保设备及人身安全后,将 0x6040-Bit7 置 1,即可完成故障复位。

0x605E	停机动作	F
设定值	(所有控制模式	都生效)
-5	DB 停机	停机后保持 DB 制动状态
-3	以 0x3000-32 紧急停止转矩停机	停机后保持 DB 制动状态
-2	以 0x6085 斜坡停机	停机后保持 DB 制动状态
-1	以 0x6084 (Homing 模式使用	停机后保持 DB 制动状态
-1	609A) 斜坡停机	
0	NA	NA
1	以 0x6084 (Homing 模式使用	停机后保持自由状态
ı	609A) 斜坡停机	
2	以 0x6085 斜坡停机	停机后保持自由状态
3	以 0x3000-32 紧急停止转矩停机	停机后保持自由状态

表 5.22 暂停停机动作定义

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效	默认
(Hex)	(Hex)	白你	数据失空	数值池囱	中位	属性	属性	模式	值
6060	0	控制模式	INT8	0 ~ 10		rw	RPDO	All	0
6061	0	控制模式显示	INT8	0 ~ 10		Ro	TPDO	All	0

支持的控制模式参考表,0x6060 用来设置控制模式,0x6061 用来确认控制模式是否设置正确,0x6060 请勿设置下表以外的数值。

	表 3.2	5 K32C 驱动裔又特的控制快式
0x6060 设定值	RS2C 控制模式	详解
0	预留	
1	轮廓位置模式-PP	控制器负责下发目标位置,驱动器内部规划曲线
2	预留	
3	轮廓速度模式-PV	控制器负责下发目标速度,驱动器内部规划曲线
4	轮廓转矩模式-PT	控制器负责下发目标转矩,驱动器内部规划曲线
5	预留	
6	回零模式-HM	用于寻找机械原点
7	插补模式-IP	适用于单轴或者多轴同步控制

表 5.23 RS2C 驱动器支持的控制模式

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值 范围	单位	SDO 属性	PDO 属性	生效模式	默认 值
6062	0	位置指令	INT32		指令单位	ro	TPDO	PP/HM	

反应伺服内部的位置指令输入。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值 范围	单位	SDO 属性	PDO 属性	生效模式	默认 值
6063	0	编码器位置	INT32		编 码 器 单位	ro	TPDO	PP/HM	

反馈当前编码器位置值,编码器单位。

$$0x6063 = \frac{0x6091.01}{0x6091.02} * 0x6064$$

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值 范围	単位	SDO 属性	PDO 属性	生效模式	默认 值
6064	0	位置反馈	INT32		指令单 位	ro	TPDO	PP/HM	

反馈当前位置值,指令单位.

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)	ישומי	型	奴直厄	十四	属性	属性	1	秋火田
6065	0	位置偏差过	UINT32	0 ~	指令单	rw	RPDO	PP/HM	25165824
0003	6065 0	大阈值	UIINTSZ	0xFFFFFFF	位	IVV	KFDO	PP/MIVI	23103024
6066	0	位置偏差过	UNT16	0 ~ 0xFFFF	宁 孙	F147	BBDO	DD/LIM	1000
6066	大时间累计		UNTIO	0 ~ 0xFFFF	毫秒	rw	RPDO	PP/HM	1000

位置偏差绝对值大于 0x6065, 且时间到达 0x6066 时, 会发生位置偏差过大报警。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
6067	0	位置到达阈值	UINT32	0 ~ 0xFFFFFFF	指令单 位	rw	RPDO	PP/HM	5872
6068	0	位置到达时间窗口	UNT16	0 ~ 0xFFFF	1111	rw	RPDO	PP/HM	0

位置偏差绝对值小于 0x6067, 且时间到达 0x6068 时, 驱动器则认为位置到达。在位置控制模式下, 0x6041.Bit10 会被置 1。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
606C	0	实际速度 反馈	INT32		指令单 位/秒	ro	TPDO	All	

实际速度反馈,指令单位。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)		型			属性	属性		
606D	0	速度到达 阈值	UINT16	0 ~ 0xFFFF	r/min	rw	RPDO	PV	20
606E	0	速度到达 时间窗口	UNT16	0 ~ 0xFFFF	毫秒	rw	RPDO	PV	0

0x60FF 目标速度和 0x606C 的差值绝对值(转化为 r/min)在 0x606D(单位 r/min)设定范围内,且时间到达 0x606E, 0x6041.Bit10 会被置 1。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)		型			属性	属性		
606F	0	零速阈值	UINT16	0 ~ 0xFFFF	r/min	rw	RPDO	PV	20
6070	0	零速阈值 时间	UNT16	0 ~ 0xFFFF	毫秒	rw	RPDO	PV	0

速度控制模式且驱动器使能情况下, 实际速度反馈 0x606C 绝对值 (转化成 r/min) 小于 0x606F(单位 r/min), 且时间到达 0x6070 时,认为电机速度为零。在 PV 模式下,0x6041-Bit12 置 1。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
6071	0	目标转矩	INT16	-3000~3000	0.10%	rw	RPDO	PT	

在转矩控制模式下,设置命令转矩,0x6071=1000时,1000*0.1%=1,表示额定的电机转矩。

索引	子索引	名称	数 坪米刑	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)	口小	数据类型	数値心型	十四	属性	属性	工双铁巧	
6072	0	最大转矩	UINT16	0 ~ 3000	0.10%	rw	RPDO	All	3000

设置最大的输出转矩绝对值,在任何控制模式下都有效。等于 1000 时,1000*0.1% =1,表示额定的电机转矩。

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效	默认值
(Hex)	(Hex)	11110000000000000000000000000000000000	— 数据关至	数阻范围	+W	属性	属性	模式	秋火阻
6074	0	内部转矩指令	INT16	-3000~3000	0.10%	ro	TPDO	All	0

用来显示伺服运转时,伺服内部计算的转矩指令值。等于 1000 时,1000*0.1% =1,表示额定的电机转矩。

索引	子索引	なわ	粉セ米利	粉/古芬 国	台/六	SDO 属性	PDO	生效	默认
(Hex)	(Hex)	名称	数据类型	数值范围	单位	SDO 属性	属性	模式	值
6077	0	实际转矩	INT16	-3000 ~ 3000	0.10%	ro	TPDO	All	0

显示伺服运转时,实际的转矩反馈。等于1000时,1000*0.1%=1,表示额定的电机转矩。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模 式	默认值
607A	0	目标位置	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	PP	0

用来设置目标位置。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
607C	0	原点偏置	INT32	0x80000000 ~ 0x7FFFFFF	指令 单位	rw	RPDO	Homing	0

在回零模式完成后,电机停止的位置为机械原点,但是此时电机停止的位置不是机械零点,可以通过设置 0x607C, 使得两者关系如下: 机械原点 = 机械零点+ 0x607C。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模	默认值
(Hex)	(Hex)	白你	型	数阻范围	中位	属性	属性	式	款以 值
	0	子索引 个数	UINT8			ro			2
607D	01	最 小 软件限位	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	All	-2147483648
	02	最大软 件限位	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	All	2147483647

设置软件限位, 电机运行位置始终在最小/最大值之间。

索引	子索引	名称	数据类	粉店范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)	口你	型	数值范围单位	属性	属性	土双俣八	秋火阻	
607E	0	指令极性	UINT8	0 ~ 255		rw	RPDO	All	0

用来设置是否怼来自上位机的指令进行取反操作,详细参考下表。

表 5.24 指令极性详解

		, DC - 1 - 1 - 1 - 1	
Bit 位	名称	说明	备注
0~4	未定义		
5	转矩指令极性取反	0-无效 1-转矩指令*(-1)	PT 模式:对 0x6071 目标转矩取反
6	速度指令极性取反	0-无效 1-速度指令*(-1)	PV 模式:对 0x60FF 目标速度取反
7	位置指令极性取反	0-无效 1-位置指令*(-1)	PP 模式:对 0x607A 目标位置取反

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
607F	0	最大轮廓 转速	UINT32	0 ~ 0xFFFFFFF	指令单位/秒	rw	RPDO	PP/PV/PT/ HM	838860800

设置电机最大转速。默认数值为 6000r/min 。

索引	子索引	夕华	数据类	数值范围	台/六	SDO	PDO	生效模式	古/ 1 / 4 图
(Hex)	(Hex)	名称	型	知自汜国	单位	属性	属性	土奴侯工	默认值
6001	0	松 南油	LIINITOO	0 ~	指令单	20.47	DDDO	DD	12001012
6081	U	轮廓速度	UINT32	0xFFFFFFF	位/秒	rw	RPDO	PP	13981013

设置 PP 模式下,每段曲线的匀速运行速度。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)		型			属性	属性		
6083	0	轮廓加速 度	UINT32	0 ~ 0xFFFFFFF	指令单 位 / 秒 ^2	rw	RPDO	PP/PV	1096111445
6084	0	轮廓减速	UINT32	0 ~	指令单	rw	RPDO	PP/PV	1096111445

Raynen睿能[®]

	度	0xFFFFFFF	位 / 秒		
			^2		

PP/PV 模式下的加/减速度。其中 6084

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
6085	0	快速停机减速度	UINT32	0 ~ 0xFFFFFFFF	指令单 位 / 秒 ^2	rw	RPDO	1096111445	UINT32

当 0x6040.Bit5 = 0 时,激活快速停机功能,此时以 0x6085 作为减速度执行停机动作。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
6087	0	转矩斜坡	UINT32	0~ 0xFFFFFFF		rw	RPDO	PT	4294967295

转矩模式下的"转矩加速度",表示每秒的转矩指令增量。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模式	默认值
(Hex)	(Hex)	口你	型	数1月76日	꾸건	属性	属性	工双俣八	系外但
	0	子索引个 数	UINT8			ro			2
6091	01	电机轴分 辨率	UINT32	0 ~ 0xFFFFFFF	1	rw	RPDO	PP/PV	1
	02	输出轴分 辨率	UINT32	1 ~ 0xFFFFFFF	1	rw	RPDO	PP/PV	1

参考 5.5.3 小节的描述。

索引	子索引	ha sha	数据类	₩/古 井田	⇔	SDO	PDO	<i>t</i> + ∴ <i>h</i> +±−+	网上:1/古
(Hex)	(Hex)	名称	型	数值范围	单位	属性	属性	生效模式	默认值
6098	0	回零方式	INT8	0~35	1	rw	RPDO	НМ	0

设置回零方式。

Raynen 睿能[®]

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效	默认值
(Hex)	(Hex)	白你	型	知自治也	中位	属性	属性	模式	秋以阻
	00	子索引个 数	UINT8			ro		1 1	2
6099	01	寻找减速 点的速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒	rw	RPDO	НМ	13981013
	02	寻找原点 的速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒	rw	RPDO	НМ	1398101

0x6099.01 设置的速度相对快一点;

0x6099.02 设置的速度相对慢一点;

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模 式	默认值
609A	0	回零加速度	UINT32	0 ~ 0xFFFFFFF	指 令 单 位/秒^2	rw	RPDO	НМ	1096111445

设置回零模式时的加速度。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效 模式	默认值
60B0	0	位置偏移	INT32	0x80000000 ~	指令单	rw	RPDO	IP	0
		1-1-1/1/01/2		0x7FFFFFFF	位				

仅用于 IP 模式。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
60B1	0	速度偏移	INT32	0x80000000 ~ 0x7FFFFFF	指令 单位	rw	RPDO	IP	0

仅用于 IP 模式。

索引	子索引	夕护	数据类	粉店芸田	台台	SDO	PDO	生沙堪士	四4:1 /古
(Hex)	(Hex)	名称	型	数值范围	单位	属性	属性	生效模式	默认值
60B2	0	转矩偏移	INT16	-3000~3000	0.10%	rw	RPDO	IP	0

仅用于 IP 模式。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模	默认
(Hex)	(Hex)		型			属性	属性	式	值
	00	子索引个数	UINT8			ro			2
60C1	01	插补模式的位移 指令	UINT32	0~ 2^32-1		RW	RxPDO	IP	0

用于设置 CANopen 插补模式 (IP) 位置指令值。

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	生效模	默认
(Hex)	(Hex)		型			属性	属性	式	值
6063	00	子索引个数	UINT8			ro			2
60C2	01	插补周期值	UINT32	1~ 20		RW	RxPDO	IP	0

在插补模式工作时,用于设置插补周期值。

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	生效	默认
(Hex)	(Hex)					属性	属性	模式	值
60E0	0	正转最大转矩	UINT16	0~3000	0.10%	rw	RPDO	All	3000
60E1	0	反转最大转矩	UINT16	0~3000	0.10%	rw	RPDO	All	3000

设置驱动器正转(逆时针)或反转时的电机最大输出转矩。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认 值
60F4	0	位置偏差	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	ro	TPDO	PP/HM	0

在位置控制模式时, 0x60F4 用于显示位置指令与实际位置之间的偏差。

索引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认 值
60FC	0	内部位置 指令	INT32	0x80000000 ~ 0x7FFFFFF	编码器单 位	ro	TPDO	PP/HM	0

显示位置指令值

$$0x60FC = \frac{0x6091.01}{0x6091.02} * 0x6062$$
表 5.26 DI 状态位详解

索 引 (Hex)	子索引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属性	生效模式	默认值
60FF	0	目标速度	INT32	0x80000000 ~ 0x7FFFFFFF	指令单 位	rw	RPDO	PV	INT32

设置在 PV 模式下的目标速度。

6 故障处理

伺服单元发生异常时,面板数码管会闪烁显示故障码,如图 8.1 所示。

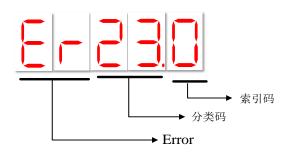


图 9.1 伺服数码管故障状态显示

注:

- a) 在故障显示模式,按 "SET"键停止数码管闪烁,再按 "MODE"键,切换到参数显示模式。
- b) 可以通过参数 P00.06 设置面板不显示警告消息;
- c) 如果同时发生多个故障的话,面板默认显示故障级别最高故障码(不可复位的故障);
- d) 如果故障/错误类型允许复位 (查阅 8.2 节表格中是否允许复位选项),可以通过 DI 设置参数 (2-ALM-RST 复位报警输入)或者参数 P0805 进行故障复位;
- e) 并非所有故障都可复位,请排除故障原因确保安全后方可复位;
- f) 错误的故障复位方式,可能造成伺服误动作,可能造成人身伤害,请在设计阶段认真评估。

6.1 警告和故障一览表

警报一览表按照警报代码的顺序,列出了警报内容、报警类型、警报复位可否。

不同报警类型发生时的停机方式

有关报警发生时的电机停止方法,请参照5.5.11停机设定。

报警复位

是:可通过警报复位解除警报。但如果仍然存在警报因素,则无法解除。

否: 无法解除报警

报警代码		代码	内容	属性	属性	
分多	分类码 索引码			报警类型	报警复位	
2	3	0	IPM 模块过流	故障 1	否	
2	3	1	U 相过流	故障 1	否	
2	3	2	V 相过流	故障 1	否	
2	3	5	再生电阻短路	故障 1	否	
2	3	6	再生电阻过小	警告	是	
3	1	0	控制电源掉电	故障 1	否	
3	1	1	动力电源缺相	警告	是	
3	2	0	直流母线过压	故障 1	是	
3	2	1	再生过载	警告	是	
3	2	4	直流母线欠压	故障 1	是	
3	2	7	驱动器过载	故障 1	是	
3	2	8	电机过载	故障 2	是	
3	2	9	电机过载警告	警告	是	
3	2	Α	驱动器电机功率不匹配	警告	是	
4	3	0	IPM 模块过温	故障 2	是	
4	3	5	风扇故障	警告	是	
5	1	0	软启动继电器故障	故障 1	否	
5	2	0	相电流传感器故障	故障 1	否	
5	5	0	写驱动器 EEPROM 超时	故障 1	否	
5	5	1	读驱动器 EEPROM 超时	故障 1	否	
5	5	2	驱动器 EEPROM 读写数据个数超限	<u> </u>	是	
5	5	6	读写编码器 EEPROM 失败	故障 1	否	
5	5	7	磁极辨识结果写入编码器 EEPROM 失败	故障 2	是	
6	3	0	厂家参数初始化失败	故障 1	是	
6	3	1	用户参数初始化失败	故障 1	是	
6	3	2	参数值异常	故障 2	是	
6	3	3	需要重新接通电源的参数变更	<u> </u>	是	
6	3	7	编码器 EEPROM 中的检查字数据校验错误	故障 2	是	
7	1	0	电机堵转	故障 2	是	
7	1	1	电机电缆断线警告	<u> </u>	是	
7	1	2	电机 UVW 接线错误	故障 1	否	
7	3	0	绝对值编码器多圈计数器异常	故障 2	是	
7	3	1	编码器电池失效	故障 2	是	
7	3	2	编码器单圈计数错误	故障 2	是	
7	3	3	编码器电池报警	警告	是	
7	3	4	编码器过热	警告	是	
7	4	0	处理器异常 1	故障 1	否	
7	4	1	处理器异常 2	故障 1	否	

报警代码		弋码	内容	属性	ŧ
分		索引码		报警类型	报警复位
7	4	2	处理器异常 3	故障 1	否
7	4	3	处理器异常 4	故障 1	否
7	5	0	编码器超时	故障 1	否
7	5	1	编码器计数增量异常	故障 2	是
7	5	2	编码器通信错误 1	故障 1	否
7	5	3	编码器通信错误 2	故障 1	否
8	4	0	过速	故障 1	是
8	4	1	飞车	故障 1	否
8	5	0	正向超程警告	警告	是
8	5	1	反向超程警告	警告	是
8	5	2	绝对值编码器多圈计数溢出	故障 2	是
8	6	1	位置偏差过大	故障 2	是
8	6	4	电子齿轮比设定超限	故障 2	是
F	1	0	产品组合异常	故障1	否
F	1	1	电机识别失败	故障1	否
F	1	2	电机代号或编码器类型设定错误	故障 1	否
F	1	5	紧急停止	<u> </u>	是
F	1	6	电机角度搜索失败	故障1	是
F	2	0	编码器异常警告	<u> </u>	是
F	2	1	分频脉冲输出设定异常警告	<u> </u>	是
F	2	2	分频脉冲输出过速	故障 2	是
F	2	5	DI 功能配置异常	故障1	是
F	2	6	DO 功能配置异常	故障1	是
F	2	7	伺服 ON 指令无效故障	故障 2	是
F	4	6	全闭环位置控制误差过大	故障 2	是
F	4	Α	STO 异常	故障1	否
F	С	0	CAN 网络警告	故障 2	是
F	С	1	CAN 网络错误	故障 2	是
F	С	2	CAN 网络关闭	故障 2	是
F	С	3	CAN 报文接受错误	故障 2	是
F	С	4	CAN 报文发送错误	故障 2	是
F	С	5	CAN 心跳丢失	故障 2	是
F	С	6	CAN 网络 NMT 状态跳转错误	故障 2	是

6.2 警告的处理方法

报警代码 报警内容	原因	确认方法	处理措施
Err23.6 再生电阻过小	使用外接制动电阻时,电阻阻值小 于驱动器允许的最小值(P002E 出 厂值)。	测量外接制动电阻阻值,确 认是否小于 P002E 出厂 值。	确保驱动器外接制动电阻阻 值大于驱动器允许的最小 值,并将该值写入参数 P002E中。
	三相电线接线不良。	确认电源接线。	确认电源接线是否有问题。
Err31.1	三相电源不平衡。	测量三相电源各相的电压。	修正电源的不平衡。
动力电源缺相	未设定单相 AC 电源输入而输入了 单相电源。	确认电源和参数设定。	设定正确的电源输入和参 数。
	电源电压超过规格范围。	测量电源电压。	将电源电压设定在规格范围 内。
Err32.1 再生过载	外置再生电阻值或再生电阻容量不 足,或处于连续再生状态。	再次确认运行条件和容量。	变更再生电阻值、再生电阻 容量。再次进行运行条件的 调整。
	外置再生电阻阻值 (P002E) 或容量 (P002F) 设定小于外置再生电阻的实际值。	外置再生电阻值过大确认再 生电阻值是否正确。	将其变更为正确的电阻值和 容量。
Err32.9	电机运行超过了过载保护特性。	确认电机的过载特性和运行 指令。	重新探讨负载条件、运行条 件。或者重新研讨电机容 量。
电机过载警告 	由于机械性因素而导致电机不驱 动,造成运行时的负载过大。	确认运行指令和电机速度。	改善机械性因素。
Err32.A 驱动器电机功率不匹 配	驱动器功率和电机功率不匹配	驱动器连接了功率不符合的 电机(大马拉小车或小马拉 大车)	根据选型手册正确选择功率 匹配的电机
Err43.5 风扇故障	伺服单元内部的风扇停止转动。	确认是否风扇内卡入异物。	去除异物后,仍然发生报 警,请更换伺服驱动器。
Err55.2 驱动器 EEPROM 读 写数据个数超限	非常频繁且大量的修改参数,并存储入 EEPROM (P0005 = 1)。	检查上位机系统是否频繁、 快速修改参数。	在上位机进行写操作前,对 于无需存储在 EEPROM 参 数,将 P0005 设置为 0。
Err63.3 需要重新接通电源的 参数变更	变更了需要重新上电才能生效的参 数。	确认是否变更过需要重新上 电才能生效的参数。	重新上电。
Err71.1 电机电缆断线警告	驱动器 UVW 输出线缆脱落,损坏。	检查线缆接口是否松动,损 坏。	重新连接电机电线缆或更换 线缆。
Err73.3 编码器电池报警	电池电压低于规定值 (3.0V)。	测量电池的电压。	更换电池。

报警代码 报警内容	原因	确认方法	处理措施
Err73.4	伺服电机的环境温度过 高。	测量伺服电机的环境温度。	将伺服电机的环境温度调节 到40°C以下。
编码器过热	伺服电机以超过额定值的负 载运行。	通过累积负载率确认负载。	将伺服电机的负载调节到额 定值以内后再运行。
Err85.0 正向超程警告	正向运行禁止功能有效。	确认输入端子功能是否配置了正向 超程禁止功能,电机正向运行后导 致正向超程开关有效。	反向运行直至正向超程开关 无效。
Err85.1 反向超程警告	反向运行禁止功能有效。	确认输入端子功能是否配置了反向 超程禁止功能,电机反向运行后导 致反向超程开关有效。	正向运行直至反向超程开关 无效。
ErrF1.5 紧急停止	DI 紧急停止信号有效。	确认 DI 功能是否被置位紧急停止,并确认紧急停止信号是否有效。	确认可以安全运行以后,解 除紧急停止信号。
ErrF2.0 编码器异常警告	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。
ErrF2.1 分频脉冲输出设定 异常警告	编码器分频脉冲数 (P0016, P0017) 设定过大。	确认编码器分频脉冲数(P0016, P0017)是否大于编码器分辨率 /4。	正确调整设定参数 (P0016, P0017)。

6.3 故障的处理方法

报警代码 报警内容	原因	确认方法	处理措施
	主回路电缆接线错误,或接 触不良。	确认接线是否正确。	修改接线。
	主回路电缆内部短路,或发 生了接地短路。	确认电缆的 UVW 相间、UVW 与接地之间是否发生短路。	电缆有可能短路。更换电 缆。
	伺服电机内部发生短路或接 地短路。	确认电机端子的 UVW 相间、 UVW 与接地之间是否发生短路。	有可能是伺服电机故障。更 换伺服电机。
Er23.0	伺服单元内部发生短路或接 地短路。	确认伺服单元的伺服电机连接端子的 UVW 相间、UVW 与接地之间是否发生短路。	有可能是伺服单元故障。更 换伺服单元。
IPM 模块过流	再生电阻接线错误或接触不 良。	确认接线是否正确。	修改接线。
	伺服单元的再生电阻值过 小。	确认再生电阻的使用频率。	将再生电阻值变更为伺服单 元最小容许电阻值以上的 值。
	因噪音而产生误动作。	改善接线、设置等噪音环境,确认 有无效果。	采取防止噪音的措施,诸如 正确进行 FG 的接线等。另 外, FG 的电线尺寸请使用和 伺服单元主回路电线尺寸相 同的电线。
	主回路电缆接线错误,或接 触不良。	确认接线是否正确。	修改接线。
	主回路电缆内部短路,或发 生了接地短路。	确认电缆的 UVW 相间、UVW 与接地之间是否发生短路。	电缆有可能短路。更换电 缆。
Err23.1	伺服电机内部发生短路或接 地短路。	确认电机端子的 UVW 相间、 UVW 与接地之间是否发生短路。	有可能是伺服电机故障。更 换伺服电机。
U 相过流	伺服单元内部发生短路或接 地短路。	确认伺服单元的伺服电机连接端子的 UVW 相间、UVW 与接地之间是否发生短路。	有可能是伺服单元故障。更 换伺服单元。
	脉冲输入和伺服开启的时间同步或者脉冲输入过快。	确认指令输入是否早于伺服使能 确认指令加减速时间是否过快。	伺服使能开启以后,再输入 指令。 指令加减速时间加长。
Err23.2 V 相过流	与 Err23.1 相同。	与 Err23.1 相同。	与 Err23.1 相同。
Err23.5	外置再生电阻器的接线不 良、脱落或断线。	确认外置再生电阻器的接线。	对外置再生电阻器进行正确 接线。
再生电阻短路	驱动器的再生驱动晶体管故 障。	-	更换伺服驱动器。

报警代码 报警内容	原因	确认方法	处理措施
Err31.0 控制电源掉电	控制电电源工作异常。	确认控制电供电电源电压是否会发生瞬间掉电现象。 确认控制电供电电源电压规格是否符合。	更换电源,确保电源电压工 作正常。
	控制电线缆和驱动器连接不良。	确认控制电线缆连接是否存在接触 不良的情况。	重新连接控制电线缆或更换 线缆。
	电源电压超过规格范围。	测量电源电压。	将电源电压调节到产品规格 范围内。
Err32.0	电源处于不稳定状态,或受 到了雷击的影响。	测量电源电压。	改善电源状况,设置浪涌抑制器后再次接通伺服单元电源。
直流母线过压	AC 电源电压超过规格范围时 进行了加减速。	确认电源电压和运行中的速度、转 矩。	将 AC 电源电压调节到产品 规格范围内。
	外置再生电阻值比运行条件 大。	确认运行条件和再生电阻值。	考虑运行条件和负载,再次 探讨再生电阻值。
	在容许转动惯量比或质量比 以上的状态下运行。	确认转动惯量比或质量比在容许范 围以内。	延长减速时间,或减小负 载。
Err32.4	电源电压低于规格范围。	测量电源电压。	将电源电压调节到正常范 围。
直流母线欠压	运行中电源电压下降。	测量电源电压。	增大电源容量。
	驱动器负载过大。	确认平均负载率 P0928 是否高于 80%。	驱动器重新选型,选择功率 更大的驱动器。
Err32.7	增益调整不良导致发振,摆 动动作。	确认电机是否发生振动,异音。	重新调整参数。
驱动器过载 	机械受到碰撞, 机械突然变 重, 扭曲。	确认机械动作状态是否异常。	排除机械异常,减轻负载。
	制动器未打开,电机动作。	测定制动器端子电压。	打开制动器。
Err32.8	电机运行超过了过载保护特 性。	确认电机的过载特性和运行指令。	重新探讨负载条件、运行条件。或者重新研讨电机容量。
电机过载	由于机械性因素而导致电机 不驱动,造成运行时的负载 过大。	确认运行指令和电机速度。	改善机械性因素。

报警代码 报警内容	原因	确认方法	处理措施
	环境温度过高。	用温度计测量环境温度。或通过伺 服单元设置环境监视确认运行状 况。	改善伺服单元的设置条件, 降低环境温度。
	通过关闭电源而多次对过载 警报复位后进行了运行。	利用警报显示来确认是否发生了过 载警报。	变更警报的复位方法
Err43.0 IPM 模块过温	驱动器负载过大。	确认平均负载率 P0928 是否高于 80%。	驱动器重新选型,选择功率 更大的驱动器。
	增益调整不良导致发振,摆 动动作。	确认电机是否发生振动,异音。	重新调整参数。
	机械受到碰撞,机械突然变 重,扭曲。	确认机械动作状态是否异常。	排除机械异常,减轻负载。
	制动器未打开,电机动作。	测定制动器端子电压。	打开制动器。
Err51.0 软启继电器故障	伺服单元故障 。	重新接通伺服单元的电源。仍然发生警报时,有可能是伺服单元故障。	更换伺服单元。
Err52.0 相电流传感器故障	伺服单元故障。	重新接通伺服单元的电源。仍然发生警报时,有可能是伺服单元故障。	更换伺服单元。
Err55.0 写驱动器 EEPROM 超时	驱动单元故障。	重新接通伺服单元的电源,更改参数后,仍然发生警报时,有可能是 伺服单元故障。	更换伺服单元。
Err55.1 读驱动器 EEPROM 超时	驱动单元故障。	重新接通伺服单元的电源,读取参数时,仍然发生警报,有可能是伺服单元故障。	更换伺服单元。
Err55.6 读写编码器	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。
EEPROM 失败	编码器线缆异常。	检查编码器线缆是否损坏,线缆接 口是否松动。	更换编码器线缆,或重新接线。
Err55.7 磁极辨识结果写入 编码器 EEPROM	编码器故障。	重新接通伺服单元的电源。执行磁 极辨识,仍然发生警报时,有可能 是编码器故障。	更换伺服电机。
集時器 EEPROW 失败	编码器线缆异常。	走編明备成學。 检查编码器线缆是否损坏,线缆接 口是否松动。	更换编码器线缆,或重新接 线。

报警代码 报警内容	原因	确认方法	处理措施
Err63.0 厂家参数初始化失	控制电电源异常,导致驱动 器读取参数失败。	确认控制电供电电源电压是否会发生瞬间掉电现象。 确认控制电供电电源电压规格是否符合。	更换电源,确保电源电压工 作正常。
败	驱动器固件更新。	确认是否更新过驱动器固件。	进行参数初始化。
	驱动单元故障。	在进行参数初始化后,仍然发生报 警时,有可能时伺服单元故障。	更换伺服单元。
Err63.1 用户参数初始化失	控制电电源异常,导致驱动 器读取参数失败。	确认控制电供电电源电压是否会发生瞬间掉电现象。 生瞬间掉电现象。 确认控制电供电电源电压规格是否符合。	更换电源,确保电源电压工 作正常。
败	驱动器固件更新。	确认是否更新过驱动器固件。	进行参数初始化。
	驱动单元故障。	在进行参数初始化后,仍然发生报 警时,有可能时伺服单元故障。	更换伺服单元。
Err63.2	在参数设定范围外。	确认变更后的参数的设定范围。	将变更后的参数设为设定范 围内的值。
	驱动器固件更新。	确认是否更新过驱动器固件。	进行参数初始化。
参数值异常	驱动单元故障。	在进行参数初始化后,仍然发生报警时,有可能时伺服单元故障。	更换伺服单元。
Err63.7	驱动器和电机不匹配。	根据驱动器和电机铭牌确认产品是 否匹配。	更换匹配的驱动器或者电 机。
编码器 EEPROM 中的检查字数据校	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。
验错误	编码器线缆异常。	检查编码器线缆是否损坏,线缆接 口是否松动。	更换编码器线缆,或重新接 线。
Err71.0	机械原因导致电机堵转。	确认机械负载是否过大,或者机械 结构发生碰撞。	驱动器重新选型,选择功率 更大的驱动器。 改善机械性因素。
电机堵转	驱动器 UVW 输出线缆连接异常或者编码器线缆连接异常。	在无负载情况下使用点动运行,并检查接线。	正确连接线缆,或更换线 缆。
Err71.2 电机 UVW 接线错 误	电机 UVW 电缆线序连接错 误。	确认驱动器 UVW 接线端子和电机 UVW 线缆先相序——对应。	正确连接电机 UVW 线缆。

报警代码 报警内容	原因	确认方法	处理措施
Err73.0 绝对值编码器多圈 计数器异常	编码器发生异常。	绝对值编码器多圈数据复位 (P0804 置 1) 后,重新接通伺服 单元的电源,仍然发生警报时,有 可能是编码器故障。	更换伺服电机。
Frr73.1	电池连接不良、未连接。	确认电池的连接。	正确连接电池。
编码器电池报警	电池电压低于规定值 (3.0V)。	测量电池的电压。	更换电池。
Fr.72.2	编码器电缆是否被夹住, 包层损坏,信号线受到干 扰。	确认编码器用电缆和连接器的状 态。	确认编码器电缆的铺设是否 有问题。
Err73.2 编码器单圈计数错 误	确认编码器电缆是否与大电 流电线捆在一起或者相距过 近。	确认编码器用电缆的设置状态。	将编码器电缆铺设在不会遭 受浪涌电压的位置。
	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。
Err74.0 处理器异常 1	伺服单元故障。	重新接通伺服单元的电源。仍然发生警报时,有可能是伺服单元故障。	更换伺服单元。
Err74.1 处理器异常 2	伺服单元故障。	重新接通伺服单元的电源。仍然发生警报时,有可能是伺服单元故障。	更换伺服单元。
Err74.2 处理器异常 3	伺服单元故障。	重新接通伺服单元的电源。仍然发生警报时,有可能是伺服单元故障。	更换伺服单元。
Err74.3 处理器异常 4	伺服单元故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是伺服单元故 障。	更换伺服单元。
	编码器电缆是否被夹住,包 层损坏,信号线受到干扰。	确认编码器用电缆和连接器的状 态。	确认编码器电缆的铺设是否 有问题。
Err75.0 编码器超时	确认编码器电缆是否与大电 流电线捆在一起或者相距过 近。	确认编码器用电缆的设置状态。	将编码器电缆铺设在不会遭 受浪涌电压的位置。
	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。

报警代码 报警内容	原因	确认方法	处理措施	
	编码器电缆是否被夹住,包	确认编码器用电缆和连接器的状	确认编码器电缆的铺设是否	
	层损坏,信号线受到干扰。	态。	有问题。	
Err75.1 编码器计数增量异 常	确认编码器电缆是否与大电 流电线捆在一起或者相距过 近。	确认编码器用电缆的设置状态。	将编码器电缆铺设在不会遭 受浪涌电压的位置。	
	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。	
	编码器电缆是否被夹住,包 层损坏,信号线受到干扰。	确认编码器用电缆和连接器的状 态。	确认编码器电缆的铺设是否 有问题。	
Err75.2 编码器通信错误 1	确认编码器电缆是否与大电 流电线捆在一起或者相距过 近。	确认编码器用电缆的设置状态。	将编码器电缆铺设在不会遭 受浪涌电压的位置。	
	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。	
	编码器电缆是否被夹住,包 层损坏,信号线受到干扰。	确认编码器用电缆和连接器的状 态。	确认编码器电缆的铺设是否 有问题。	
Err75.3 编码器通信错误 2	确认编码器电缆是否与大电 流电线捆在一起或者相距过 近。	确认编码器用电缆的设置状态。	将编码器电缆铺设在不会遭 受浪涌电压的位置。	
	编码器故障。	重新接通伺服单元的电源。仍然发 生警报时,有可能是编码器故障。	更换伺服电机。	
	电机接线的 U、V、W 相序错误。	确认伺服电机的接线。	确认电机接线是否有问题。	
Err84.0	指令输入值超过了过速。	确认输入指令。	降低指令值。或调整增益。	
过速	电机速度超过了最高速度。	确认电机速度的波形。	降低速度指令输入增益,调整同服增益。或调整运转条件。	
Err84.1	电机接线的 U、V、W 相序错误。	确认伺服电机的接线。	确认电机接线是否有问题。	
飞车	电机初始磁极角度值错误。	重新进行磁极角度辨识后,报警消 除。	重新进行磁极角度辨识。	
Err85.2 绝对值编码器多圈 计数溢出	编码器多圈计数值超过规定 值。	-	绝对值编码器多圈数据复位 (P0804 置 1)。	

报警代码 报警内容	原因	确认方法	处理措施
	伺服电机的 U、V、W 的接线不正确。	确认伺服电机主回路电缆的接线。	确认电机电缆或编码器电缆 有无接触不良等问题。
	伺服单元的增益较低。	确认伺服单元的增益是否过低。	通过自动调整 (无上位指 令) 功能等提高伺服增益。
Err86.1 位置偏差过大	位置指令脉冲的频率较高。	试着降低指令脉冲后再运行。	降低位置指令脉冲频率或指 令加速度,或调整电子齿轮 比。
	位置指令加速度过大。	试着降低指令加速度后再运行。	加入位置指令加减速时间参数 (P0320) 等的平滑功能。
	相对于运行条件,位置偏差 过大警报值(P0523)较低。	确认位置偏差过大警报值 (P0523)是否适当。	正确设定参数 P0523 的值。
Err86.4	电子齿轮比参数(P0508, P050A,P050C,P050E) 设定过小。	确认电子齿轮比(分子) (P0508)/电子齿轮比(分母) (P050A)是否小于编码器分辨率 /10^7。 确认电子齿轮比2(分子) (P050C)/电子齿轮比2(分母) (P050E)是否小于编码器分辨率 /10^7。	正确调整设定参数值 (P0508, P050A, P050C, P050E)。
限	电子齿轮比参数(P0508, P050A,P050C,P050E) 设定过大。	确认电子齿轮比(分子) (P0508) /电子齿轮比(分母) (P050A) 是否大于编码器分辨率 /2.5。 确认电子齿轮比 2(分子) (P050C) /电子齿轮比 2(分母) (P050E) 是否小于编码器分辨率 /2.5。	正确调整设定参数值 (P0508, P050A, P050C, P050E)。
5 510	驱动器功率板型号无法识 别。	确认驱动器功率板的系列型号是否 与控制板配套。	更换驱动器系列型号相配套 的控制板和功率板。
ErrF1.0 产品组合异常	驱动器功率板和控制板连接 不良。	确认驱动器功率板和控制板的接插件是否连接正确?	重新连接控制板和功率板。
	驱动器故障。	-	更换驱动器。

报警代码 报警内容	原因	确认方法	处理措施
ErrF1.1	驱动器和电机不匹配。	根据驱动器和电机铭牌确认产品是 否匹配。	更换匹配的伺服电机。
电机识别失败	编码器故障。	-	更换伺服电机。
ErrF1.2 电机代号或编码器 类型设置错误。	电机代号 (P9001) 或编 码器类型 (P9026) 设置错 误。	根据伺服电机铭牌确认产品是 否匹配。	正确设定电机代号 (P9001) 或编码器类型 (P9026)。
ErrF1.6 电机角度搜索失败	机械原因导致电机轴振动。	确认在进行角度搜索时必须没有负 载连接。	确保电机轴无负载。
ErrF2.2 分版脉冲输出过速	分频脉冲的输出频率过大, 超过了限制值 (1MHz)。	确认编码器分频脉冲数 (P0016, P0017) 过大导致输出频率超过了 限制值 (1MHz)。	正确调整设定参数 (P0016, P0017)。
万%阶/干制山辽还	电机速度过高,分频脉冲的 输出频率超过了限制值。	确认分频脉冲的输出设定和电机速 度。	降低电机速度
ErrF2.5 DI 功能配置异常	DI 功能重复配置。	确认 DI 功能配置时是否将同一个 功能重复配置给了多个 DI 端子。	确保每个 DI 功能被分配到 1 个 DI 端子。
ErrF2.6 DO 功能配置异常	DO 功能重复配置。	确认 DO 功能配置时是否将同一个 功能重复配置给了多个 DO 端子。	确保每个 DO 功能被分配到 1 个 DO 端子。
ErrF2.7 伺服 ON 指令无 效故障	在使用辅助功能使能伺服驱 动器时,外部 DI 端子伺服 ON 信号有效。	确认在使用辅助功能时的外部 DI 端子伺服 ON 信号状态。	将外部 DI 端子伺服 ON 功能 设为无效。
	伺服电机的 U、V、W 的接线不正确。	确认伺服电机主回路电缆的接线。	确认电机电缆或编码器电缆 有无接触不良等问题。
	伺服单元的增益较低。	确认伺服单元的增益是否过低。	通过自动调整 (无上位指 令) 功能等提高伺服增益。
ErrF4.6 全闭环位置控制误 差过大	位置指令脉冲的频率较高。	试着降低指令脉冲后再运行。	降低位置指令脉冲频率或指 令加速度,或调整电子齿轮 比。
	位置指令加速度过大。	试着降低指令加速度后再运行。	加入位置指令加减速时间参数 (P0320) 等的平滑功能。
	相对于运行条件,混合偏差 过大警报值 (P1104) 较低。	确认合偏差过大警报值 (P1104) 是否适当。	正确设定参数 P1104 的值。
ErrF4.A	伺服单元和安全选购模块的 连接不良。	确认伺服单元和安全选购模块 的连接。	正确连接安全选购模块。
STO 异常	安全选购模块的故障。	-	更换安全选购模块。

报警代码 报警内容	原因	确认方法	处理措施
ErrFC.0	CAN 模块错误达	重新启动伺服驱动器故障消	请检查设备 EMC,保证伺服驱动
CAN 网络警告	到警告上限	失	器和伺服电机可靠接地,并且在
			CAN 网络首末节点安装终端 120
			欧姆电阻。
ErrFC.1	CAN 模块错误达	重新启动伺服驱动器故障消	请检查设备 EMC,保证伺服驱动
CAN 网络错误	到错误上限	失	器和伺服电机可靠接地,并且在
			CAN 网络首末节点安装终端 120
			欧姆电阻。
ErrFC.2	CAN 模块进入保	重新启动伺服驱动器故障消	请检查设备 EMC,保证伺服驱动
CAN 网络关闭	护关闭状态	失	器和伺服电机可靠接地,并且在
			CAN 网络首末节点安装终端 120
			欧姆电阻。
ErrFC.3	CAN 报文接受错	故障复位/检查设备的	请检查设备 EMC,保证伺服驱动
CAN 报文接受错误	误次数过多	EMC/更换屏蔽双绞线故障	器和伺服电机可靠接地,并且在
		消失	CAN 网络首末节点安装终端 120
			欧姆电阻。
ErrFC.4	CAN 报文发送错	故障复位后/检查设备的	请检查设备 EMC,保证伺服驱动
CAN 报文发送错误	误次数过多	EMC/更换屏蔽双绞线故障	器和伺服电机可靠接地,并且在
		消失	CAN 网络首末节点安装终端 120
			欧姆电阻。
ErrFC.5	伺服发送的心跳	主控节点通过对象字典	主控节点请配置合适的心跳报文时
CAN 心跳功能错误	报文时间过长或	0X1017 重新配置心跳报文	间,时间太小或者太大均不合适,推
	者丢失	的时间 10 毫秒。	荐时间 10 毫秒至 2000 毫秒
ErrFC.6	伺服使能后	伺服使能后停止更新 NMT	伺服使能后,请勿进行 NMT 状态
CAN 网络 NMT 状态跳转错误	NMT 指令错误	指令,或者断开使能再进行	机切换操作。
		NMT 指令操作。	

7 对象字典一览表

7.1 对象字典 1000H 组参数列表

索引	子索引	 名称	数据类型	SDO	默认值
(Hex)	(Hex)		数据关至	属性	秋以恒
1000	0	设备类型	UINT32	RO	0x20192
1001	0	错误寄存器	UINT8	RO	0
1003	0	预定义错误场		RO	1
	1	错误场	UINT32	RW	0
1005	0	同步报文 COB-ID	UINT32	RW	0x80
1006	0	同步循环周期	UINT32	RW	0
					RS2C-Servo-
1008	0	制造商设备名称	String	RO	Drive
1009	0	硬件版本	String	RO	V1.0
100A	0	软件版本	String	RO	P11V04N0010
100C	0	节点守护时间	UINT16	RW	0
100D	0	寿命因子	UINT8	RW	0
1010	0	保存参数		RO	4
	1	保存所有对象参数	UINT32	RW	0
	2	保存通讯对象参数	UINT32	RW	0
	3	保存应用对象参数	UINT32	RW	0
	4	保存厂家定义对象参数	UINT32	RW	0
1011	0	恢复默认参数		RO	4
	1	恢复所有对象参数	UINT32	RW	0
	2	恢复通讯对象参数	UINT32	RW	0
	3	恢复应用对象参数	UINT32	RW	0
	4	恢复厂家定义对象参数	UINT32	RW	0
1014	0	紧急报文 COB-ID	UINT32	RW	0x80+node_ID
1016	0	消费者心跳时间		RO	1
		消费者心跳时间			
	1	单位: 毫秒	UINT32	RW	0
		生产者心跳时间			
1017	0	单位: 毫秒	UINT16	RW	0
1018	0	设备对象描述		RO	4
	1	厂商 ID	UINT32	RO	0x03B9
	2	设备代码	UINT32	RO	0x12
	3	设备修订版本号	UINT32	RO	0x34
	4	序列号	UINT32	RO	0x56
1029	0	错误行为对象		RO	1
	1	通讯错误	UINT8	RW	0

索引(Hex)	子索引 (Hex)	名称	数据类型	SDO 属性	默认值
	0	SDO 服务器参数	UINT8	RO	2
1200	1	从站至主站的 COB-ID	UINT32	RW	600h+node-ID
	2	主站至从站的 COB-ID	UINT32	RW	580h+node_ID
	0	RPDO1 的参数	UINT32	RO	
	1	RPDO1的COB_ID	UINT32	RW	200h+node-ID
1400	2	RPDO1 的传输类型	UINT8	RW	255
	3	抑制时间	UINT16	RW	0
	5	事件定时器	UINT16	RW	0
	0	RPDO2 的参数	UINT8	RO	
	1	RPDO2的COB_ID	UINT32	RW	300h+node-ID
1401	2	RPDO2 的传输类型	UINT8	RW	255
	3	抑制时间	UINT16	RW	0
	5	事件定时器	UINT16	RW	0
	0	RPDO3 的参数	UINT8	RO	
	1	RPDO3的COB_ID	UINT32	RW	400h+node-ID
1402	2	RPDO3 的传输类型	UINT8	RW	255
	3	抑制时间	UINT16	RW	0
	5	事件定时器	UINT16	RW	0
	0	RPDO4 的参数	UINT8	RO	
	1	RPDO4的COB_ID	UINT32	RW	500h+node-ID
1403	2	RPDO4 的传输类型	UINT8	RW	255
	3	抑制时间	UINT16	RW	0
	5	事件定时器	UINT16	RW	0
	0	RPDO1 映射参数	LUNTO	DO.	0: 关闭
1600	0	RPDO1 映射参数	UINT8	RO	1~8: 激活
	01~08	RPDO1 映射对象	UINT32	RW	0
	0	RPDO2 映射参数	UINT8	RO	0: 关闭
1601	U	RPDO2 映别多数	UIIVIO	KO	1~8: 激活
	01~08	RPDO2 映射对象	UINT32	RW	0
	0	DDDO2 肺针会粉	LIINITO	DO.	0: 关闭
1602	0	RPDO3 映射参数	UINT8	RO	1~8: 激活
	01~08	RPDO3 映射对象	UINT32	RW	0
		DDD04 邮包会数	LIINITO	DO.	0: 关闭
1603	0	RPDO4 映射参数	UINT8	RO	1~8: 激活
	01~08	RPDO4 映射对象	UINT32	RW	0

	 子索引				
索引(Hex)	(Hex)	名称	数据类型	SDO 属性	默认值
	00	TPDO1 的参数	UINT8	RO	
1800	01	TPDO1的COB_ID	UINT32	RW	180h+node-ID
1800	02	TPDO1 的传输类型	UINT8	RW	255
	03	抑制时间	UINT16	RW	0
	05	事件定时器	UINT16	RW	0
	00	TPDO2 的参数	UINT8	RO	
	01	TPDO2的COB_ID	UINT32	RW	280h+node-ID
1801	02	TPDO2 的传输类型	UINT8	RW	255
	03	抑制时间	UINT16	RW	0
	05	事件定时器	UINT16	RW	0
	00	TPDO3 的参数	UINT8	RO	
	01	TPDO3的COB_ID	UINT32	RW	380h+node-ID
1802	02	TPDO3 的传输类型	UINT8	RW	255
	03	抑制时间	UINT16	RW	0
	05	事件定时器	UINT16	RW	0
	00	TPDO4 的参数	UINT8	RO	
	01	TPDO4的COB_ID	UINT32	RW	480h+node-ID
1803	02	TPDO4 的传输类型	UINT8	RW	255
	03	抑制时间	UINT16	RW	0
	05	事件定时器	UINT16	RW	0
	00	TPDO1 映射参数	UINT8	RO	0: 关闭
1A00	00	TFDOT 映到多数	UIIVIO	KO	1~8: 激活
	01~08	TPDO1 映射对象	UINT32	RW	0
	00	TPDO2 映射参数	UINT8	RO	0: 关闭
1A01		11 002 10/31/9/90	Olivio	NO	1~8: 激活
	01~08	TPDO2 映射对象	UINT32	RW	0
	00	TPDO3 映射参数	UINT8	RO	0: 关闭
1A02		11 203 15(3)] \$ \$\$	Onvio	NO NO	1~8: 激活
	01~08	TPDO3 映射对象	UINT32	RW	0
	00	TPDO4 映射参数	UINT8	RO	0: 关闭
1A03					1~8: 激活
	01~08	TPDO4 映射对象	UINT32	RW	0

7.2 对象字典 3000H 组参数列表 (驱动器参数组)

索引	子索引	参数号	名称	数值范围	 单位	SDO	默认值
(Hex)	(Dec)	2 XX J	H.10.	双臣/0回	——————————————————————————————————————	属性	がパグい日
3000	1	P0005	通讯写 EEPROM 使能	0 ~ 99	1	rw	1
3000	2	P0006	禁止面板显示警告消息	0 ~ 1	1	Rw	0
3000	3	P0007	LED 初始状态显示	0 ~ 99	1	rw	50
3000	4	P000B	运转方向选择	0 ~ 1	1	rw	0
3000	5	P000C	绝对位置类型	0 ~ 1	1	rw	0
3000	6	P0012	脉冲输出逻辑反转	0 ~ 1	1	rw	0
3000	7	P0013	Z 脉冲输出极性选择	0 ~ 1	1	rw	1
3000	8	P0016	编码器分频脉冲数	0 ~ 2147483647	1Pulse/Rev	rw	2500
3000	9	P001C	超程停机方式	0 ~ 4	1	rw	1
3000	10	P001D	第1类故障报警停机方式	0 ~ 3	1	rw	0
3000	11	P001F	停机切换速度阈值	10 ~ 10000	r/min	rw	100
3000	12	P0020	急停转矩	0 ~ 6000	0.1%	rw	1000
3000	13	P0022	抱闸打开-指令接收延迟时间	0 ~ 500	ms	rw	100
3000	14	P0023	停止时抱闸动作-伺服 OFF 延 迟时间	1 ~ 1000	ms	rw	100
3000	15	P0024	运行时抱闸动作-伺服 OFF 延迟时间	1 ~ 1000	ms	rw	300
3000	16	P0025	抱闸动作速度值	0 ~ 3000	r/min	rw	20
3000	17	P0029	再生制动方式	0 ~ 3	1	rw	0
3000	18	P002A	再生电阻散热系数	10 ~ 100	1	rw	50
3000	19	P002C	内置再生电阻阻值	1 ~ 1000	Ω	ro	50
3000	20	P002D	内置再生电阻容量	1 ~ 65535	W	ro	50
3000	21	P002E	外置再生电阻阻值	1 ~ 1000	Ω	rw	50
3000	22	P002F	外置再生电阻容量	1 ~ 65535	W	rw	40
3000	23	P0030	单/三相选择	0 ~ 1	1	rw	0

索引	子索引	参数号	名称	数值范围	单位	SDO	默认值
(Hex)	(Dec)	多数亏	台 你	致1月20日	甲亚	属性	款 以 阻
3001	1	P0107	GDI-1 功能分配	0 ~ 40	1	rw	2
3001	2	P0108	GDI-1 逻辑电平	0 ~ 3	1	rw	0
3001	3	P0109	GDI-2 功能分配	0 ~ 40	1	rw	4
3001	4	P010A	GDI-2 逻辑电平	0 ~ 3	1	rw	0
3001	5	P010B	GDI-3 功能分配	0 ~ 40	1	rw	5
3001	6	P010C	GDI-3 逻辑电平	0 ~ 3	1	rw	0
3001	7	P010D	GDI-4 功能分配	0 ~ 40	1	rw	36
3001	8	P010E	GDI-4 逻辑电平	0 ~ 3	1	rw	0
3001	9	P010F	GDI-5 功能分配	0 ~ 40	1	rw	3
3001	10	P0110	GDI-5 逻辑电平	0 ~ 3	1	rw	0
3001	11	P0111	GDI-6 功能分配	0 ~ 40	1	rw	0
3001	12	P0112	GDI-6 逻辑电平	0 ~ 3	1	rw	0
3001	13	P0113	GDI-7 功能分配	0 ~ 40	1	rw	0
3001	14	P0114	GDI-7 逻辑电平	0 ~ 3	1	rw	0
3001	15	P0127	DO 端子信号源选择	0 ~ 31	1	rw	0
3001	16	P0128	DO-1 功能分配	0 ~ 13	1	rw	1
3001	17	P0129	DO-1 逻辑电平	0 ~ 1	1	rw	0
3001	18	P012A	DO-2 功能分配	0 ~ 13	1	rw	2
3001	19	P012B	DO-2 逻辑电平	0 ~ 1	1	rw	0
3001	20	P012C	DO-3 功能分配	0 ~ 13	1	rw	3
3001	21	P012D	DO-3 逻辑电平	0 ~ 1	1	rw	0
3001	22	P012E	DO-4 功能分配	0 ~ 13	1	rw	4
3001	23	P012F	DO-4 逻辑电平	0 ~ 1	1	rw	0
3001	24	P0130	DO-5 功能分配	0 ~ 13	1	rw	0
3001	25	P0131	DO-5 逻辑电平	0 ~ 1	1	rw	0

索引	子索引	全 粉口	£7.Σhn	**/古艾田	公 / 六·	CDO 冒州	M4.2.1 /古
(Hex)	(Dec)	参数号	名称 	数值范围	单位	SDO 属性	默认值
3002	1	P0201	调整模式选择	0-4	1	rw	0
3002	2	P0202	刚性等级选择	0 ~ 31	1	rw	12
3002	3	P0203	第1位置环增益	0 ~ 20000	0.1/s	rw	400
3002	4	P0204	第 1 速度环增益	1 ~ 20000	0.1Hz	rw	250
3002	5	P0205	第1速度环积分时间常数	10 ~ 50000	0.01ms	rw	3200
3002	6	P0206	第1转矩滤波时间常数	0 ~ 3000	0.01ms	rw	80
3002	7	P0207	第2位置环增益	0 ~ 20000	0.1/s	rw	400
3002	8	P0208	第2速度环增益	1 ~ 20000	0.1Hz	rw	250
3002	9	P0209	第2速度环积分时间常数	10 ~ 50000	0.01ms	rw	3200
3002	10	P020A	第2转矩滤波时间常数	0 ~ 3000	0.01ms	rw	80
3002	11	P0210	增益切换方式选择	0 ~ 1	1	rw	1
3002	12	P0211	增益切换条件选择	0 ~ 10	1	rw	0
3002	13	P0212	切换延迟时间	0 ~ 10000	0.1ms	rw	50
3002	14	P0213	切换水平	0 ~ 20000	1	rw	50
3002	15	P0214	切换滞环	0 ~ 20000	1	rw	30
3002	16	P0215	位置增益切换时间	0 ~ 10000	0.1ms	rw	20
3002	17	P021C	转矩滤波器类型	0 ~ 1	1	rw	0
3002	18	P021D	双二阶高频增益	0 ~ 50	%	rw	16
3002	19	P021E	PDFF 增益	0 ~ 1000	0.1%	rw	1000
3002	20	P021F	速度前馈方式选择	0 ~ 2	1	rw	0
3002	21	P0220	速度前馈增益	0 ~ 1000	0.1%	rw	0
3002	22	P0221	速度前馈滤波时间常数	0 ~ 6400	0.01ms	rw	0
3002	23	P0222	转矩前馈方式选择	0 ~ 2	1	rw	0
3002	24	P0223	转矩前馈增益	0 ~ 2000	0.1%	rw	0
3002	25	P0224	转矩前馈滤波时间常数	0 ~ 6400	0.01ms	rw	0
3002	26	P0230	负载惯量比	0 ~ 12000	1%	rw	100
3002	27	P0232	手动惯量辨识模式	0 ~ 1	1	rw	1
3002	28	P0233	惯量辨识最大速度	100 ~ 1000	r/min	rw	500
3002	29	P0234	惯量辨识加速时间	20 ~ 800	1ms	rw	100

索引	子索引	全 粉口	<i>l</i> σ.¥n	<i>**/</i> 古芒田	公 /六	SDO	默认
(Hex)	(Dec)	参数号	名称	数值范围	单位	属性	值
3003	1	P0301	共振抑制方式选择	0 ~ 4	1	rw	0
3003	2	P0302	谐振频率检出值	0 ~ 8000	Hz	ro	0
3003	3	P0303	第1陷波器频率	50 ~ 8000	Hz	rw	8000
3003	4	P0304	第1陷波器宽度	0 ~ 20	1	rw	2
3003	5	P0305	第1陷波器深度	0 ~ 99	%	rw	0
3003	6	P0306	第2陷波器频率	50 ~ 8000	Hz	rw	8000
3003	7	P0307	第2陷波器宽度	0 ~ 20	1	rw	2
3003	8	P0308	第2陷波器深度	0 ~ 99	%	rw	0
3003	9	P0309	第 3 陷波器频率	50 ~ 8000	Hz	rw	8000
3003	10	P030A	第3陷波器宽度	0 ~ 20	1	rw	2
3003	11	P030B	第 3 陷波器深度	0 ~ 99	%	rw	0
3003	12	P030C	第4陷波器频率	50 ~ 8000	Hz	rw	8000
3003	13	P030D	第4陷波器宽度	0 ~ 20	1	rw	2
3003	14	P030E	第4陷波器深度	0 ~ 99	%	rw	0
3003	15	P0320	位置平滑滤波时间常数	0 ~ 65535	0.1ms	rw	0
3003	16	P0321	位置 FIR 滤波时间常数	0 ~ 1000	0.1ms	rw	0
3003	17	P0328	低频减震方式选择	0 ~ 1	1	rw	0
3003	18	P0329	低频起震判定阈值	0 ~ 1000	1	rw	10
3003	19	P032A	低频振动频率	0 ~ 1000	0.1Hz	rw	1000
3003	20	P032B	减振陷波频率比	12 ~ 30	0.1	rw	12
3003	21	P032C	减振陷波宽度等级	0 ~ 10	1	rw	2

索引	子索引	参数号	名称	数值范围	单位	SDO	默认值	
(Hex)	(Dec)	2203	H13.	XIIIOI	1	属性		
3004	1	P0401	速度观测器选择	0 ~ 65535	1	ro	0	
3004	2	P0402	速度观测器带宽	0 ~ 65535	Hz	ro	8000	
3004	3	P0410	扰动观测器选择	0 ~ 1	1	rw	0	
3004	4	P0411	扰动观测器增益	-1000 ~ 1000	0.1%	rw	0	
3004	5	P0412	扰动观测器时间常数	0 ~ 2500	0.01ms	rw	0	
3004	6	P0420	恒定负载补偿值	-1000 ~1000	0.1%	rw	0	
3004	7	P0421	正向摩擦补偿值	-1000 ~1000	0.1%	rw	0	
3004	8	P0422	反向摩擦补偿值	-1000 ~1000	0.1%	rw	0	

索引	子索引	参数号	名称	数值范围	单位	SDO	默认值	
(Hex)	(Dec)	多数与	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	数阻范围	中位	属性	秋火阻	
3006	1	P0606	DI 点动速度	0 ~ 6000	r/min	rw	100	
3006	2	P0608	软启动加速时间	0 ~ 65535	ms	rw	0	
3006	3	P0609	软启动减速时间	0 ~ 65535	ms	rw	0	
3006	4	P061C	旋转检出设定	0 ~ 1000	r/min	rw	20	
3006	5	P061D	速度到达设定	10 ~ 10000	r/min	rw	1000	

索引 (Hex)	子索引 (Dec)	参数号	名称	数值范围	单位	SDO 属性	默认值
3008	1	P0802	参数初始化	0 ~ 2	1	rw	0
3008	2	P0803	读写编码器 ROM	0 ~ 3	1	rw	0
3008	3	P0804	绝对值编码器多圈数据 复位	0 ~ 3	1	rw	0
3008	4	P0805	报警清除	0 ~ 1	1	rw	0
3008	5	P0806	紧急停机	0 ~ 1	1	rw	0
3008	6	P0807	速度 JOG 使能	0 ~ 65535	1	rw	0
3008	7	P0809	磁极角辨识	0 ~ 2	1		0
3008	8	P080C	启动手动惯量辨识	0 ~ 65	1	rw	0
3008	9	P080F	开启 AI 零偏自校正	0 ~ 2	1	rw	0
3008	10	P0810	DI 端子强制设定值	0 ~ 511	1	rw	0
3008	11	P0811	DO 端子强制设定值	0 ~ 31	1	rw	0

索引 (Hex)	子索引 (Dec)	参数号	名称	数值范围	单位	SDO 属性	默认值
3009	1	P0901		-32767 ~ 32767	0.1%	ro	0
3009	2	P0902	速度指令	-32767 ~ 32767	r/min	ro	0
3009	3	P0904	电机速度	-32767 ~ 32767	r/min	ro	0
3009	4	P0906	电机速度(0.1r/min)	-2147483647 ~ 2147483647	0.1r/min	ro	0
3009	5	P0908	指令脉冲速度	-32767 ~32767	r/min	ro	0
				-2147483647 ~			
3009	6	P090A	目标位置 	2147483647	指令单位	ro	0
				-2147483647 ~			
3009	7	P090C	当前位置	2147483647	指令单位	ro	0
2000		20005	绝对位置计数器 (编码器单	-2147483647 ~	_		0
3009	8	P090E	位)	2147483647	1	ro	
3009	9	P0910	绝对位置计数器		1	ro	0
2000	10	D0013	位置偏差计数器 (编码器单	-2147483647 ~	1		0
3009	10	P0912	位)	2147483647	1	ro	0
2000	11	D0014	冷黑性小刀关 (比么总)	-2147483647 ~	1		0
3009	11	P0914	位置随动误差 (指令单位)	2147483647	1	ro	0
3009	12	P0916	控制字	0 ~ 65535	1	ro	0
3009	13	P0917	状态字	0 ~ 65535	1	ro	0
3009	14	P091A	绝对值编码器单圈数据	0 ~ 2147483647	1	ro	0
3009	15	P091C	绝对值编码器多圈数据	0 ~ 65535	1	ro	0
3009	16	P091D	电机电角度	0 ~ 65535	0.1°	ro	0
3009	17	P091E	相电流有效值	0 ~ 65535	0.01A	ro	0
3009	18	P0920	直流母线电压	0 ~ 65535	0.1V	ro	0
3009	19	P0922	控制电源电压		V	ro	0
3009	20	P0925	DI 端子状态	0 ~ 65535	1	ro	0
3009	21	P0926	DO 端子状态	0 ~ 65535	1	ro	0
3009	22	P0927	功率模块温度		0.1°	ro	0
3009	23	P0928	平均负载率	0 ~ 8000	0.1%	ro	0
3009	24	P0929	伺服总通电时间	0 ~ 4294967295	0.1S	ro	0
3009	25	P092B	伺服运行状态	0 ~ 65535	1	ro	0
3009	26	P0931	当前报警代码	0 ~ 65535	1	ro	0
3009	27	P0933	当前异常功能码地址	0 ~ 65535	1	ro	0
3009	28	P0935	报警记录索引号	0 ~ 9	1	ro	0
3009	29	P0936	所选记录故障码	0 ~ 65535	1	ro	0
3009	30	P0937	所选记录报警时间	0 ~ 2147483647	0.1s	ro	0
3009	31	P0939	所选记录报警时电机转速	-32767 ~ 32767	r/min	ro	0
3009	32	P093B	所选记录报警时 U 电流	-32767 ~ 32767	0.01A	ro	0
3009	33	P093C	所选记录报警时 V 电流	-32767 ~ 32767	0.01A	ro	0
3009	34	P093D	所选记录报警时母线电压	0 ~ 32767	0.1v	ro	0
3009	35	P093E	所选记录报警时 DI 状态	0 ~ 65535	1	ro	0
3009	36	P093F	所选记录报警时 DO 状态	0 ~ 65535	1	ro	0

索引 (Hex)	子索引 (Dec)	参数号	名称	数值范围	单位	SDO 属 性	默认值
3080h	1	P8001	从机轴地址	1 ~ 255	1	rw	1
3080h	2	P8002	通讯波特率	0 ~ 6	bps	rw	5
3080h	3	P8003	奇偶校验方式	0 ~ 3	1	rw	0
3080h	4	P8004	通讯错误类型	0 ~ 65535	1	rw	0
3080h	5	P8005	从机应答延时	0 ~ 5000	ms	rw	1
3080h	6	P8006	32 位数据发送次序	0 ~ 1	1	rw	1

索引 (Hex)	子索引 (Dec)	参数号	名称	数值范围	单位	SDO 属性	默认值
3082h	1	P8201	CAN 节点号	1 ~ 127	1	rw	0
3082h	2	P8202	CAN 波特率	0 ~ 5	1	rw	0

7.3 对象字典 6000H 组参数列表

索引	子索引	名称				SDO	PDO 属	
無別 (Hex)	(Hex)	1110	数据类型	数值范围	单位	属性	性	默认值
603F	0	错误码	UINT16	0 ~ 0xFFFF		ro	TPDO	
6040	0	控制字	UINT16	0 ~ 0xFFFF		rw	RPDO	0
6041	0	状态字	UINT16	0 ~ 0xFFFF		ro	TPDO	
605A	0	快速停机方式	INT16	0 ~ 7		rw	RPDO	2
605C	0	伺服 OFF 停 机	INT16	0xFFFD ~ 0x01		rw	RPDO	0
605D	0	暂停停机方式	INT16	1 ~ 3		rw	RPDO	1
605E	0	故障停机方 式	INT16	0xFFFB ~ 0x03		rw	RPDO	2
6060	0	操作模式	INT8	0 ~ 10		rw	RPDO	0
6061	0	操作模式显示	INT8			ro	TPDO	0
6062	0	指令位置	INT32		指令单位	ro	TPDO	
6063	0	编码器位置	INT32		编码器单位	ro	TPDO	
6064	0	当前位置	INT32		指令单位	ro	TPDO	
6065	0	位置偏差过 大报警值	UINT32	0 ~ 0xFFFFFFF	指令单位	rw	RPDO	25165824
6066	0	位置偏差过 大时间累计	UINT16	0 ~ 0xFFFF	毫秒	rw	RPDO	1000
6067	0	位置到达值	UINT32	0 ~ 0xFFFFFFF	指令单位	rw	RPDO	5872
6068	0	位置到达时 间窗	UINT16	0 ~ 0xFFFF		rw	RPDO	0
606C	0	实际速度	INT32		指令单位/	ro	TPDO	
606D	0	速度到达值	UINT16	0 ~ 0xFFFF	r/min	rw	RPDO	20
606E	0	速度到达时 间窗	UINT16	0 ~ 0xFFFF	毫秒	rw	RPDO	0
606F	0	零速阈值	UINT16	0 ~ 0xFFFF	r/min	rw	RPDO	20
6070	0	零速阈值时间	UINT16	0 ~ 0xFFFF	毫秒	rw	RPDO	0
6071	0	目标转矩	INT16	-3000~3000	0.10%	rw	RPDO	
6072	0	最大转矩	UINT16	0~3000	0.10%	rw	RPDO	3000
6074	0	指令转矩	INT16	0~3000	0.10%	ro	TPDO	
6077	0	实际转矩	INT16	0~3000	0.10%	ro	TPDO	
607A	0	目标位置	INT32	0x80000000 ~ 0x7FFFFFFF	指令单位	rw	RPDO	
607C	0	原点偏移量	INT32	0x80000000 ~ 0x7FFFFFFF	指令单位	rw	RPDO	0

索引	子索引	名称	数据类	数值范围	单位	SDO	PDO	默认值
(Hex)	(Hex)		型			属性	属性	
	00	软件限位设置						
607D	01	最小软件限位值	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	-2147483648
	02	最大软件限位值	INT32	0x80000000 ~ 0x7FFFFFFF	指令单位	rw	RPDO	2147483647
607E	0	指令极性	UINT8	0 ~ 255		rw	RPDO	0
607F	0	最大轮廓转速	UINT32	0 ~0xFFFFFFF	指令单位/秒	rw	RPDO	838860800
6081	0	轮廓速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒	rw	RPDO	13981013
6083	0	轮廓加速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒^2	rw	RPDO	1096111445
6084	0	轮廓减速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒^2	rw	RPDO	1096111445
6085	0	快速停机减速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒^2	rw	RPDO	1096111445
6087	0	转矩斜坡	UINT32	0 ~ 0xFFFFFFF		rw	RPDO	4294967295
	电子齿轮比	,						
6091	1	电子齿轮分子	UINT32	0 ~ 0xFFFFFFF	1	rw	RPDO	1
	2	电子齿轮分母	UINT32	1 ~ 0xFFFFFFF	1	rw	RPDO	1
6098	0	回原点模式	INT8	-127~35	1	rw	RPDO	0
	回原点速度							
6099	1	回原点时搜索减 速点速度	UINT32	0 ~ 0xFFFFFFFF	指令单位/秒	rw	RPDO	13981013
	2	回原点时搜索原 点速度	UINT32	0 ~ 0xFFFFFFFF	指令单位/秒	rw	RPDO	1398101
609A	0	回原点加速度	UINT32	0 ~ 0xFFFFFFF	指令单位/秒^2	rw	RPDO	1096111445
60B0	0	位置偏移	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	0
60B1	0	速度偏移	INT32	0x80000000 ~ 0x7FFFFFF	指令单位	rw	RPDO	0
60B2	0	转矩偏移	INT16	-3000~3000	0.10%	rw	RPDO	0

索引 (Hex)	子索 引 (Hex)	名称	数据类型	数值范围	单位	SDO 属性	PDO 属 性	默认值
60C0	00	插补模式选择	INT16	-32767 ~ 32767		rw	RPDO	0
	00	插补数据记录						
60C1	01	插补位移指令	INT32	0x80000000 ~ 0x7FFFFFF		rw	RPDO	0
6063	00	插补周期						
60C2	01	插补周期值	UINT8	1 ~ 20	ms	rw	RPDO	10
COCE	0	最大轮廓加速度	LUNTAA	0 ~	指令单位/			0xFFFFF
60C5	0		UINT32	0xFFFFFFF	秒^2	rw	RPDO	FFF
6006	0	最大轮廓减速度	LIINITOO	0 ~	指令单位/			0xFFFFF
60C6			UINT32	0xFFFFFFF	秒^2	rw	RPDO	FFF

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	默认值
(Hex)	(Hex)					属性	属性	
	支持的回	 零方式						
	0	子索引个数	UINT8					31
	1	支持的回零方式 1	UINT16	0~65535		ro		769
	2	支持的回零方式 2	UINT16	0~65535		ro		770
	3	支持的回零方式 3	UINT16	0~65535		ro		771
	4	支持的回零方式 4	UINT16	0~65535		ro		772
	5	支持的回零方式 5	UINT16	0~65535		ro		773
	6	支持的回零方式 6	UINT16	0~65535		ro		774
	7	支持的回零方式 7	UINT16	0~65535		ro		775
	8	支持的回零方式8	UINT16	0~65535		ro		776
	9	支持的回零方式 9	UINT16	0~65535		ro		777
	Α	支持的回零方式 10	UINT16	0~65535		ro		778
	В	支持的回零方式 11	UINT16	0~65535		ro		779
	С	支持的回零方式 12	UINT16	0~65535		ro		780
	D	支持的回零方式 13	UINT16	0~65535		ro		781
	E	支持的回零方式 14	UINT16	0~65535		ro		782
60E3	F	支持的回零方式 15	UINT16	0~65535		ro		783
	10	支持的回零方式 16	UINT16	0~65535		ro		784
	11	支持的回零方式 17	UINT16	0~65535		ro		785
	12	支持的回零方式 18	UINT16	0~65535		ro		786
	13	支持的回零方式 19	UINT16	0~65535		ro		787
	14	支持的回零方式 20	UINT16	0~65535		ro		788
	15	支持的回零方式 21	UINT16	0~65535		ro		789
	16	支持的回零方式 22	UINT16	0~65535		ro		790
	17	支持的回零方式 23	UINT16	0~65535		ro		791
	18	支持的回零方式 24	UINT16	0~65535		ro		792
	19	支持的回零方式 25	UINT16	0~65535		ro		793
	1A	支持的回零方式 26	UINT16	0~65535		ro		794
	1B	支持的回零方式 27	UINT16	0~65535		ro		795
	1C	支持的回零方式 28	UINT16	0~65535		ro		796
	1D	支持的回零方式 29	UINT16	0~65535		ro		797
	1E	支持的回零方式 30	UINT16	0~65535		ro		798
	1F	支持的回零方式 31	UINT16	0~65535		ro		799

索引	子索引	名称	数据类型	数值范围	单位	SDO	PDO	默认
(Hex)	(Hex)					属性	属性	值
60E6	0	实际位置计算方式	UINT8	0 ~ 1		rw		0
		指令位置偏差		0x80000000 ~				
60F4	0	担ぐ四貫帰左	INT32	0x7FFFFFF	指令单位	ro	TPDO	0
		 内部位置指令		0x80000000 ~	编码器单			
60FC	0	内即位直相交	INT32	0x7FFFFFF	位	ro	TPDO	0
60FD	0	DI 状态	UINT32	0 ~ 0xFFFFFFF	1	ro	TPDO	0
	DO 输出							
	0	子索引个数	UINT8			ro		2
60FE		DO tellult *		0 ~				
OUFE	1	DO 输出状态	UINT32	0xFFFFFFF	1	rw	RPDO	0
		DO 松山琼州		0 ~				
	2	DO 输出控制	UINT32	0xFFFFFFF	1	rw	RPDO	0
		目标速度		0x80000000 ~				
60FF	0	口彻还反	INT32	0x7FFFFFF	指令单位	rw	RPDO	0
6502	0	支持的 402 模式	UINT32	0 ~0xFFFFFFF	1	ro		0

www.raynen.cn

上海睿能高齐自动化有限公司

地址: 上海市普陀区真南路822弄129号5号楼

电话: 021-6587 0027 传真: 021-6587 0271

邮编: 200331

销售服务联络

由于本公司持续的产品升级造成的内容变更,想不另行道机。 所有版权归本公司所有。